The slender rod shown in Fig. $2-4$ is subjected to an increase of temperature along its axis, which creates a normal strain in the rod of $\epsilon_{z}=40\left(10^{-3}\right) z^{1 / 2}$, where z is given in meters. Determine (a) the displacement of the end B of the rod due to the temperature increase, and (b) the average normal strain in the rod.

Fig. 2-4

Solution

Part (a). Since the normal strain is reported at each point along the rod, a differential segment $d z$, located at position z, Fig. 2-4, has a deformed length that can be determined from Eq. 2-3; that is,

$$
d z^{\prime}=\left[1+40\left(10^{-3}\right) z^{1 / 2}\right] d z
$$

The sum total of these segments along the axis yields the deformed length of the rod, i.e.,

$$
\begin{aligned}
z^{\prime} & =\int_{0}^{0.2 \mathrm{~m}}\left[1+40\left(10^{-3}\right) z^{1 / 2}\right] d z \\
& =z+\left.40\left(10^{-3}\right)\left(\frac{2}{3} z^{3 / 2}\right)\right|_{0} ^{0.2 \mathrm{~m}} \\
& =0.20239 \mathrm{~m}
\end{aligned}
$$

The displacement of the end of the rod is therefore

$$
\Delta_{B}=0.20239 \mathrm{~m}-0.2 \mathrm{~m}=0.00239 \mathrm{~m}=2.39 \mathrm{~mm} \downarrow \quad \text { Ans. }
$$

Part (b). The average normal strain in the rod is determined from Eq. 2-1, which assumes that the rod or "line segment" has an original length of 200 mm and a change in length of 2.39 mm . Hence,

$$
\epsilon_{\mathrm{avg}}=\frac{\Delta s^{\prime}-\Delta s}{\Delta s}=\frac{2.39 \mathrm{~mm}}{200 \mathrm{~mm}}=0.0119 \mathrm{~mm} / \mathrm{mm} \quad \text { Ans. }
$$

E X A M P L E $2 \boldsymbol{2}$

A force acting on the grip of the lever arm shown in Fig. 2-5a causes the arm to rotate clockwise through an angle of $\theta=0.002 \mathrm{rad}$. Determine the average normal strain developed in the wire $B C$.

Fig. 2-5

Solution

Since $\theta=0.002 \mathrm{rad}$ is small, the stretch in the wire $C B$, Fig. $2-5 b$, is $B B^{\prime}=\theta(0.5 \mathrm{~m})=(0.002 \mathrm{rad})(0.5 \mathrm{~m})=0.001 \mathrm{~m}$. The average normal strain in the wire is therefore,

$$
\epsilon_{\mathrm{avg}}=\frac{B B^{\prime}}{C B}=\frac{0.001}{1 \mathrm{~m}}=0.001 \mathrm{~m} / \mathrm{m} \quad \text { Ans. }
$$

EXAMPLE 2.3

The plate is deformed into the dashed shape shown in Fig. 2-6a. If in this deformed shape horizontal lines on the plate remain horizontal and do not change their length, determine (a) the average normal strain along the side $A B$, and (b) the average shear strain in the plate relative to the x and y axes.

(a)

(b)

Fig. 2-6

Solution

Part (a). Line $A B$, coincident with the y axis, becomes line $A B^{\prime}$ after deformation, as shown in Fig. 2-6b. The length of this line is

$$
A B^{\prime}=\sqrt{(250-2)^{2}+(3)^{2}}=248.018 \mathrm{~mm}
$$

The average normal strain for $A B$ is therefore

$$
\begin{aligned}
\left(\epsilon_{A B}\right)_{\mathrm{avg}} & =\frac{A B^{\prime}-A B}{A B}=\frac{248.018 \mathrm{~mm}-250 \mathrm{~mm}}{250 \mathrm{~mm}} \\
& =-7.93\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}
\end{aligned}
$$

Ans.
The negative sign indicates the strain causes a contraction of AB.
Part (b). As noted in Fig. 2-6c, the once 90° angle $B A C$ between the sides of the plate, referenced from the x, y axes, changes to θ^{\prime} due to the displacement of B to B^{\prime}. Since $\gamma_{x y}=\pi / 2-\theta^{\prime}$, then $\gamma_{x y}$ is the angle shown in the figure. Thus,

$$
\gamma_{x y}=\tan ^{-1}\left(\frac{3 \mathrm{~mm}}{250 \mathrm{~mm}-2 \mathrm{~mm}}\right)=0.0121 \mathrm{rad} \quad \text { Ans. }
$$

E X A M P L E 2.4

The plate shown in Fig. 2-7a is fixed connected along $A B$ and held in the rigid horizontal guides at its top and bottom, $A D$ and $B C$. If its right side $C D$ is given a uniform horizontal displacement of 2 mm , determine (a) the average normal strain along the diagonal $A C$, and (b) the shear strain at E relative to the x, y axes.

(a)

(b)

Fig. 2-7

Solution

Part (a). When the plate is deformed, the diagonal $A C$ becomes $A C^{\prime}$, Fig. 2-7b. The length of diagonals $A C$ and $A C^{\prime}$ can be found from the Pythagorean theorem. We have

$$
\begin{aligned}
& A C=\sqrt{(0.150)^{2}+(0.150)^{2}}=0.21213 \mathrm{~m} \\
& A C^{\prime}=\sqrt{(0.150)^{2}+(0.152)^{2}}=0.21355 \mathrm{~m}
\end{aligned}
$$

Therefore the average normal strain along the diagonal is

$$
\begin{aligned}
\left(\epsilon_{A C}\right)_{\mathrm{avg}} & =\frac{A C^{\prime}-A C}{A C}=\frac{0.21355 \mathrm{~m}-0.21213 \mathrm{~m}}{0.21213 \mathrm{~m}} \\
& =0.00669 \mathrm{~mm} / \mathrm{mm}
\end{aligned}
$$

Part (b). To find the shear strain at E relative to the x and y axes, it is first necessary to find the angle θ^{\prime}, which specifies the angle between these axes after deformation, Fig. 2-7b. We have

$$
\begin{aligned}
\tan \left(\frac{\theta^{\prime}}{2}\right) & =\frac{76 \mathrm{~mm}}{75 \mathrm{~mm}} \\
\theta^{\prime} & =90.759^{\circ}=\frac{\pi}{180^{\circ}}\left(90.759^{\circ}\right)=1.58404 \mathrm{rad}
\end{aligned}
$$

Applying Eq. 2-4, the shear strain at E is therefore

$$
\gamma_{x y}=\frac{\pi}{2}-1.58404 \mathrm{rad}=-0.0132 \mathrm{rad}
$$

Ans.
According to the sign convention, the negative sign indicates that the angle θ^{\prime} is greater than 90°. Note that if the x and y axes were horizontal and vertical, then due to the deformation $\gamma_{x y}=0$ at point E.

