
The composite A-36 steel bar shown in Fig. 4–6a is made from two
segments, AB and BD, having cross-sectional areas of AAB � 600 mm2

and ABD � 1200 mm2. Determine the vertical displacement of end A
and the displacement of B relative to C.

20 kN 20 kN

75 kN

20 kN 20 kN

75 kN

= 75 kN

75 kN

PAB

= 35 kNPBC

= 45 kNPCD

(b)

40 kN40 kN

20 kN 20 kN

40 kN40 kN

75 kN

0.75 m

1 m

0.5 m

A

B

C

D

(a)

P (kN)

x (m)

35

75
0

1.0

1.75

2.25–45

(c)

E X A M P L E 4.1

Solution

Internal Force. Due to the application of the external loadings, the
internal axial forces in regions AB, BC, and CD will all be different.
These forces are obtained by applying the method of sections and the
equation of vertical force equilibrium as shown in Fig. 4–6b. This
variation is plotted in Fig. 4–6c.

Displacement. From the inside back cover, Est � 210(103) MPa. Using
the sign convention, i.e., the internal tensile forces are positive and the
compressive forces are negative, the vertical displacement of A relative
to the fixed support D is

Ans.

Since the result is positive, the bar elongates and so the displacement at
A is upward.

Applying Eq. 4–2 between points B and C, we obtain,

Ans.

Here B moves away from C, since the segment elongates.

dB>C =
PBC LBC
ABC B

=
[+7 kip]11.5 ft2112 in.>ft2
12 in22[2911032 kip>in2]

= +0.00217 in.

 = +0.0127 in.

 +
[-9 kip]11 ft2112 in.>ft2
12 in22[2911032 kip>in2]

  dA = a  
PL

AE
=

[+15 kip]12 ft2112 in.>ft2
11 in22[2911032 kip>in2]

+
[+7 kip]11.5 ft2112 in.>ft2
12 in22[2911032 kip>in2]

Fig. 4–6

[�75 kN] (1 m)(106)
————————————
[600 mm2 (210)(103) kN/m2]

�0.61 mm

[�35 kN] (0.75 m)(106)
———————————–—
[1200 mm2 (210)(103) kN/m2]

[�45 kN] (0.5 m)(106)
———————————–—
[1200 mm2 (210)(103) kN/m2]

� �0.104 mm
[�35 kN] (0.75 m)(106)

———————————–—
[1200 mm2 (210)(103) kN/m2]



The assembly shown in Fig. 4–7a consists of an aluminum tube AB having
a cross-sectional area of A steel rod having a diameter of 10 mm
is attached to a rigid collar and passes through the tube. If a tensile load
of 80 kN is applied to the rod, determine the displacement of the end C
of the rod. Take Eal = 70 GPa.Est = 200 GPa,

400 mm2.

E X A M P L E 4.2

400 mm

600 mm

AB

80 kN

(a)

C

80 kN PAB = 80 kN

80 kN
PBC = 80 kN

(b)

Solution

Internal Force. The free-body diagram of the tube and rod, Fig. 4–7b,
shows that the rod is subjected to a tension of 80 kN and the tube is
subjected to a compression of 80 kN.

Displacement. We will first determine the displacement of end C with
respect to end B. Working in units of newtons and meters, we have

The positive sign indicates that end C moves to the right relative to end
B, since the bar elongates.

The displacement of end B with respect to the fixed end A is

Here the negative sign indicates that the tube shortens, and so B moves
to the right relative to A.

Since both displacements are to the right, the resultant displacement
of C relative to the fixed end A is therefore

Ans.= 0.00420 m = 4.20 mm:
dC = dB + dC>B = 0.001143 m + 0.003056 m1:+ 2 

 = -0.001143 m = 0.001143 m:
 dB =

PL

AE
=

[-8011032 N]10.4 m2
[400 mm2110-62 m2>mm2][7011092 N>m2]

dC>B =
PL

AE
=

[+8011032 N]10.6 m2
p10.005 m22[20011092 N>m2]

= +0.003056 m:

Fig. 4–7



E X A M P L E 4.3

A rigid beam AB rests on the two short posts shown in Fig. 4–8a. AC is
made of steel and has a diameter of 20 mm, and BD is made of aluminum
and has a diameter of 40 mm. Determine the displacement of point F
on AB if a vertical load of 90 kN is applied over this point. Take

Solution

Internal Force. The compressive forces acting at the top of each post
are determined from the equilibrium of member AB, Fig. 4–8b. These
forces are equal to the internal forces in each post, Fig. 4–8c.

Displacement. The displacement of the top of each post is

Post AC:

Post BD:

A diagram showing the centerline displacements at points A, B, and F on
the beam is shown in Fig. 4–8d. By proportion of the shaded triangle, the
displacement of point F is therefore

Ans.dF = 0.102 mm + 10.184 mm2a400 mm
600 mm

b = 0.225 mm p

 = 0.102 mm p

 dB =
PBD LBD
ABD Eal

=
[-3011032 N]10.300 m2
p10.020 m22[7011092 N>m2]

= -102110-62 m

 = 0.286 mm p

 dA =
PAC LAC
AAC Est

=
[-6011032 N]10.300 m2

p10.010 m22[20011092 N>m2]
= -286110-62 m

Eal = 70 GPa.Est = 200 GPa,

200 mm 400 mm

300 mm

F

A

C

B

D

90 kN

(a)

200 mm
400 mm

90 kN

60 kN 30 kN
(b)

60 kN

PAC = 60 kN

30 kN

PBD = 30 kN
(c)

400 mm

0.184 mm

0.286 mm

0.102 mm 600 mm

0.102 mm

BA F

(d)

δF

Fig. 4–8



E X A M P L E 4.4

A member is made from a material that has a specific weight and
modulus of elasticity E. If it is formed into a cone having the dimensions
shown in Fig. 4–9a, determine how far its end is displaced due to gravity
when it is suspended in the vertical position.

Solution

Internal Force. The internal axial force varies along the member since
it is dependent on the weight W(y) of a segment of the member below
any section, Fig. 4–9b. Hence, to calculate the displacement, we must use
Eq. 4–1. At the section located at a distance y from its bottom end, the
radius x of the cone as a function of y is determined by proportion; i.e.,

The volume of a cone having a base of radius x and height y is

Since the internal force at the section becomes

Displacement. The area of the cross section is also a function of
position y, Fig. 4–9b. We have

Applying Eq. 4–1 between the limits of and yields

Ans.

As a partial check of this result, notice how the units of the terms, when
canceled, give the displacement in units of length as expected.

 =
gL2

6E

 =
g

3E �
L

0

y dy

 d = �
L

0

P1y2 dy
A1y2 E = �

L

0

[1gpr02>3L22 y3] dy

[1pr02>L22 y2] E

y = Ly = 0

A1y2 = px2 =
pr0

2

L2  y2

P1y2 =
gpr0

2

3L2  y3+q ©Fy = 0;

W = gV,

V =
p

3
 yx2 =

pr0
2

3L2 y3

x =
r0
L

 y
x
y

=
r0
L

;

g

y

L

x

r0

(a)

y

y

x

W(  )y

(b)

P(  )y
x

Fig. 4–9



E X A M P L E 4.5

The steel rod shown in Fig. 4–12a has a diameter of 5 mm. It is attached
to the fixed wall at A, and before it is loaded, there is a gap between the
wall at and the rod of 1 mm. Determine the reactions at A and if
the rod is subjected to an axial force of as shown. Neglect
the size of the collar at C. Take 

Solution

Equilibrium. As shown on the free-body diagram, Fig. 4–12b, we will
assume that the force P is large enough to cause the rod’s end B to
contact the wall at The problem is statically indeterminate since there
are two unknowns and only one equation of equilibrium.

Equilibrium of the rod requires

(1)

Compatibility. The loading causes point B to move to with no further
displacement. Therefore the compatibility condition for the rod is

This displacement can be expressed in terms of the unknown reactions
by using the load–displacement relationship, Eq. 4–2, applied to segments
AC and CB, Fig. 4–12c. Working in units of newtons and meters, we have

or

(2)

Solving Eqs. 1 and 2 yields

Ans.

Since the answer for is positive, indeed the end B contacts the wall
at as originally assumed. On the other hand, if were a negative
quantity, the problem would be statically determinate, so that 
and FA = 20 kN.

FB = 0
FBB¿

FB

FA = 16.6 kN     FB = 3.39 kN

FA10.4 m2 - FB10.8 m2 = 3927.0 N # m

-
FB10.8 m2

p10.0025 m22[20011092 N>m2]

0.001 m =
FA10.4 m2

p10.0025 m22[20011092 N>m2]

dB>A = 0.001 m =
FA LAC
AE

-
FB LCB
AE

dB>A = 0.001 m

B¿,

-FA - FB + 2011032 N = 0:+ ©Fx = 0;

B¿.

Est = 200 GPa.
P = 20 kN

B¿B¿

400 mm 800 mm

A B�
C B

= 20 kNP

(a)

1 mm

FA FB

(b)

= 20 kNP

(c)

FB

FA FA

FB

Fig. 4–12



E X A M P L E 4.6

The aluminum post shown in Fig. 4–13a is reinforced with a brass
core. If this assembly supports a resultant axial compressive load of
P � 45 kN, applied to the rigid cap, determine the average normal
stress in the aluminum and the brass. Take Eal � 70(103) MPa and 
Ebr � 105(103) MPa.

Solution

Equilibrium. The free-body diagram of the post is shown in Fig. 4–13b.
Here the resultant axial force at the base is represented by the unknown
components carried by the aluminum, and brass, The problem is
statically indeterminate. Why?

Vertical force equilibrium requires

(1)

Compatibility. The rigid cap at the top of the post causes both the
aluminum and brass to displace the same amount. Therefore,

Using the load–displacement relationships,

(2)

Solving Eqs. 1 and 2 simultaneously yields

Since the results are positive, indeed the stress will be compressive.
The average normal stress in the aluminum and brass is therefore

Ans.

Ans.

The stress distributions are shown in Fig. 4–13c.

 sbr =
3 kip

p11 in.22 = 0.955 ksi

 sal =
6 kip

p[12 in.22 - 11 in.22] = 0.637 ksi

Fal = 6 kip Fbr = 3 kip

Fal = 2Fbr

Fal = FbrBp[12 in.22 - 11 in.22]
p11 in.22 R B1011032 ksi

1511032 ksi
R

 Fal = FbraAal

Abr
b aEal

Ebr
b

 
Fal L

Aal Eal
=
Fbr L

Abr Ebr

dal = dbr

-9 kip + Fal + Fbr = 0+q ©Fy = 0;

Fbr.Fal,

0.5 m

= 45 kNP

25 mm50 mm

= 45 kNP

(b)

Fbr

Fal

(c)

= 7.64 MPabrσ

= 5.09 MPaalσ

Fig. 4–13

15 kN

�[(0.05 m)2 � (0.025 m)2]
——————–———–—

�(0.025 m2)

30 kN

70(10)3 MPa
—–———–—
105(103) MPa

30 kN
——————–—––———
�[(0.05 m)2 � (0.025 m)2]

�45 kN

� 5.09 MPa

15 kN
—–—––———
�[(0.025 m)2]

� 7.64 MPa



E X A M P L E 4.7

The three A-36 steel bars shown in Fig. 4–14a are pin connected to a rigid
member. If the applied load on the member is 15 kN, determine the force
developed in each bar. Bars AB and EF each have a cross-sectional area of

and bar CD has a cross-sectional area of 

Solution

Equilibrium. The free-body diagram of the rigid member is shown
in Fig. 4–14b. This problem is statically indeterminate since there are
three unknowns and only two available equilibrium equations. These
equations are

(1)

(2)

Compatibility. The applied load will cause the horizontal line ACE shown
in Fig. 4–14c to move to the inclined line The displacements of
points A, C, and E can be related by proportional triangles. Thus, the
compatibility equation for these displacements is

Using the load–displacement relationship, Eq. 4–2, we have

(3)

Solving Eqs. 1–3 simultaneously yields

Ans.

Ans.

Ans. FE = 2.02 kN

 FC = 3.46 kN

 FA = 9.52 kN

FC = 0.3FA + 0.3FE

FC L

115 mm22Est
=

1
2

 B FA L

125 mm22Est
R +

1
2

 B FE L

125 mm22Est
R

dC =
1
2

 dA +
1
2

 dE

dA - dE
0.8 m

=
dC - dE

0.4 m

A¿C¿E¿.

-FA10.4 m2 + 15 kN10.2 m2 + FE10.4 m2 = 0d+©MC = 0;

FA + FC + FE - 15 kN = 0+q©Fy = 0;

15 mm2.25 mm2,

15 kN

0.4 m

B

A

(a)

D

C

F

E

0.5 m

0.2 m 0.2 m

15 kN

0.2 m 0.2 m
0.4 m

(b)

FA FC FE

C

0.4 m

(c)

C
0.4 m

A E

A�
C�

E�

δE

δE
δA

δ C

Fig. 4–14



The bolt shown in Fig. 4–15a is made of 2014-T6 aluminum alloy and is
tightened so it compresses a cylindrical tube made of Am 1004-T61
magnesium alloy.The tube has an outer radius of 10 mm, and it is assumed

E X A M P L E 4.8

60 mm

5 mm10 mm

(a)

(b)

Ft

Fb



(c)

δb
0.5 mm

Initial
position

Final
position

δt

Fig. 4–15

that both the inner radius of the tube and the radius of the bolt are 5
mm. The washers at the top and bottom of the tube are considered to be
rigid and have a negligible thickness. Initially the nut is hand-tightened
slightly; then, using a wrench, the nut is further tightened one-half turn.
If the bolt has 20 threads per 20 mm, determine the stress in the bolt.

Solution

Equilibrium. The free-body diagram of a section of the bolt and the
tube, Fig. 4–15b, is considered in order to relate the force in the bolt 
to that in the tube, Equilibrium requires

(1)

The problem is statically indeterminate since there are two unknowns
in this equation.

Compatibility. When the nut is tightened on the bolt, the tube will
shorten and the bolt will elongate Fig. 4–15c. Since the nut
undergoes one-half turn, it advances a distance of 
along the bolt. Thus, the compatibility of these displacements requires

�t � 0.5 mm � �b

Taking the modulus of elasticity EAm � 45 GPa, Eal � 75 GPa, and
applying Eq. 4–2, yields

1+q2
11221 1

20 in.2 = 0.025 in.
db,dt,

Fb - Ft = 0+q©Fy = 0;

Ft.
Fb

Ft13 in.2
p[10.5 in.22 - 10.25 in.22][6.4811032 ksi]

= 0.025 in. -
Fb13 in.2

p10.25 in.22[10.611032 ksi]

5Ft � 125�(1125) � 9Fb (2)

Solving Eqs. 1 and 2 simultaneously, we get

Fb � Ft � 31556 N � 31.56 kN

The stresses in the bolt and tube are therefore

�b � �                  � 401.8 N/mm2 � 401.8 MPa Ans.

�s � �                                       � 133.9 N/mm2 � 133.9 MPa

These stresses are less than the reported yield stress for each material,
(�Y)al � 414 MPa and (�Y)mg � 152 MPa (see the inside back cover),
and therefore this “elastic” analysis is valid.

� 0.5 mm �
Ft (60 mm)

—————————————–———
�[(10 mm)2 � (5 mm)2][45(103) MPa] 

(    mm) � 0.5 mm20—20
1–
2

Fb (60 mm)
———————————
�(5 mm)2][75(103) MPa] 

Fb—–
Ab

31556 N
—–———
�(5 mm)2

Ft—–
At

31556 N
—–—————————
�[(10 mm)2 � (5 mm)2]



E X A M P L E 4.9

The A-36 steel rod shown in Fig. 4–17a has a diameter of 5 mm.It is attached
to the fixed wall at A, and before it is loaded there is a gap between the
wall at and the rod of 1 mm. Determine the reactions at A and 

Solution

Compatibility. Here we will consider the support at as redundant.
Using the principle of superposition, Fig. 4–17b, we have

(1)

The deflections and are determined from Eq. 4–2.

Substituting into Eq. 1, we get

Ans.

Equilibrium. From the free-body diagram, Fig. 4–17c,

Ans.-FA + 20 kN - 3.40 kN = 0 FA = 16.6 kN:+ ©Fx = 0;

 FB = 3.4011032 N = 3.40 kN
 0.001 m = 0.002037 m - 0.3056110-62FB

 dB =
FB LAB
AE

=
FB11.20 m2

p10.0025 m22[20011092 N>m2]
= 0.3056110-62FB

 dP =
PLAC
AE

=
[2011032 N]10.4 m2

p10.0025 m22[20011092 N>m2]
= 0.002037 m

dBdP

0.001 m = dP - dB1:+ 2
B¿

B¿.B¿

(b)

1 mm

= 20 kNP

=

+

Pδ

Bδ

FB

= 20 kNP

Initial
position

Final
position

400 mm 800 mm
C B

= 20 kNP

(a)

1 mm

A B�

20 kNFA 3.40 kN

(c)

Fig. 4–17



E X A M P L E 4.10

The A-36 steel bar shown in Fig. 4–18 is constrained to just fit between
two fixed supports when T1 � 30°C. If the temperature is raised to 
T2 � 60°C, determine the average normal thermal stress developed in
the bar.

Solution

Equilibrium. The free-body diagram of the bar is shown in Fig. 4–18b.
Since there is no external load, the force at A is equal but opposite to
the force acting at B; that is,

The problem is statically indeterminate since this force cannot be
determined from equilibrium.

Compatibility. Since the thermal displacement at A that
would occur, Fig. 4–18c, is counteracted by the force F that would be
required to push the bar back to its original position.The compatibility
condition at A becomes

Applying the thermal and load–displacement relationships, we have

Thus, from the data on the inside back cover,

� [12(10�6)/°C] (60°C � 30°C)(0.010 m)2 [200(106) kPa]

� 7.2 kN

From the magnitude of F, it should be apparent that changes in
temperature can cause large reaction forces in statically indeterminate
members.

Since F also represents the internal axial force within the bar, the
average normal compressive stress is thus

Ans.s =
F

A
=

2.87 kip

10.5 in.22 = 11.5 ksi

 F = a¢TAE

0 = a¢TL -
FL

AL

dA>B = 0 = dT - dF1+q2

dF

dTdA>B = 0,

FA = FB = F+q©Fy = 0;

1 m

10 mm

10 mm

A

B

(a)

(b)

F

F

(c)

δT

δF

Fig. 4–18

� 72 MPa
7.2 	 10�3 MN
———————

(0.01 m)2



E X A M P L E 4.11

A 2014-T6 aluminum tube having a cross-sectional area of is
used as a sleeve for an A-36 steel bolt having a cross-sectional area of

Fig. 4–19a. When the temperature is the nut holds
the assembly in a snug position such that the axial force in the bolt is
negligible. If the temperature increases to determine the
average normal stress in the bolt and sleeve.

T2 = 80°C,

T1 = 15°C,400 mm2,

600 mm2

150 mm

(a) (b)

Fb

Fs

Fig. 4–19

Solution

Equilibrium. A free-body diagram of a sectioned segment of the
assembly is shown in Fig. 4–19b. The forces and are produced since
the sleeve has a higher coefficient of thermal expansion than the bolt,
and therefore the sleeve will expand more when the temperature is
increased. The problem is statically indeterminate since these forces
cannot be determined from equilibrium. However, it is required that

(1)

Compatibility. The temperature increase causes the sleeve and bolt to
expand and Fig. 4–19c. However, the redundant forces 
and elongate the bolt and shorten the sleeve. Consequently, the end
of the assembly reaches a final position, which is not the same as the
initial position. Hence, the compatibility condition becomes

d = 1db2T + 1db2F = 1ds2T - 1ds2F1+p2

Fs

Fb1db2T,1ds2T

Fs = Fb+q©Fy = 0;

FsFb



(c)

Initial
position

Final
position

(  s) T

(  s)F

(  b) T

(  b)F

δ
δ

δ

δ

δ

Applying Eqs. 4–2 and 4–4, and using the mechanical properties from the
table on the inside back cover, we have

Using Eq. 1 and solving gives

The average normal stress in the bolt and sleeve is therefore

Ans.

Ans.

Since linear–elastic material behavior was assumed in this analysis, the
calculated stresses should be checked to make sure that they do not exceed
the proportional limits for the material.

 ss =
20.26 kN

600 mm2 110-6 m2>mm22 = 33.8 MPa

 sb =
20.26 kN

400 mm2 110-6 m2>mm22 = 50.6 MPa

Fs = Fb = 20.26 kN

-
Fs10.150 m2

600 mm2 110-6 m2>mm22[73.111092 N>m2]

= [23110-62>°C]180°C - 15°C210.150 m2
+

Fb10.150 m2
1400 mm22110-6 m2>mm22[20011092 N>m2]

[12110-62>°C]180°C - 15°C210.150 m2



E X A M P L E 4.12

The rigid bar shown in Fig. 4–20a is fixed to the top of the three posts
made of A-36 steel and 2014-T6 aluminum. The posts each have a length
of 250 mm when no load is applied to the bar, and the temperature is

Determine the force supported by each post if the bar is
subjected to a uniform distributed load of 150 kN>m and the temperature
is raised to 

Solution

Equilibrium. The free-body diagram of the bar is shown in Fig. 4–20b.
Moment equilibrium about the bar’s center requires the forces in the steel
posts to be equal. Summing forces on the free-body diagram, we have

(1)

Compatibility. Due to load, geometry, and material symmetry, the top
of each post is displaced by an equal amount. Hence,

(2)

The final position of the top of each post is equal to its displacement
caused by the temperature increase, plus its displacement caused by the
internal axial compressive force, Fig. 4–20c. Thus, for a steel and
aluminum post, we have

Applying Eq. 2 gives

Using Eqs. 4–2 and 4–4 and the material properties on the inside back
cover, we get

-1dst2T + 1dst2F = -1dal2T + 1dal2F

dal = -1dal2T + 1dal2F 1+p2
dst = -1dst2T + 1dst2F 1+p2

dst = dal1+p2

2Fst + Fal - 9011032 N = 0+q©Fy = 0;

T2 = 80°C.

T1 = 20°C.

150 kN/m300 mm 300 mm

(a)

SteelAluminumSteel

250 mm
40 mm

60 mm

40 mm

(b)

Fst Fal Fst

90 kN

(c)

Initial Position

Final Position

al( )Fδ
st( )Tδ

  st  =   alδδ

al( )Tδ

st( )Fδ

Fig. 4–20 = -[23110-62>°C]180°C - 20°C210.250 m2 +
Fal10.250 m2

p10.03 m22[73.111092 N>m2]

-[12110-62>°C]180°C + 20°C210.250 m2 +
Fst10.250 m2

p10.020 m22[20011092 N>m2]

(3)

To be consistent,all numerical data has been expressed in terms of newtons,
meters, and degrees Celsius. Solving Eqs. 1 and 3 simultaneously yields

Ans.

The negative value for indicates that this force acts opposite to that
shown in Fig. 4–20b. In other words, the steel posts are in tension and
the aluminum post is in compression.

Fst

Fst = -16.4 kN Fal = 123 kN

Fst = 1.216Fal - 165.911032



E X A M P L E 4.13

A steel bar has the dimensions shown in Fig. 4–26. If the allowable
stress is �allow � 115 MPa, determine the largest axial force P that the
bar can carry.

P

P

10 mm10 mm

20 mm

40 mm

10 mm

Fig. 4–26

Solution

Because there is a shoulder fillet, the stress-concentration factor can be
determined using the graph in Fig. 4–24. Calculating the necessary
geometric parameters yields

Thus, from the graph,

Computing the average normal stress at the smallest cross section, we
have

�avg � � 0.005P N/mm2

Applying Eq. 4–7 with yields

Ans.P = 5.79 kip

16.2 ksi = 1.412P2
sallow = Ksavg

sallow = smax

K = 1.4

 
w
h

=
2 in.
1 in.

= 2

 
r
n

=
0.5 in.
1 in.

= 0.50� 0.50
10 mm
—–—–
20 mm

� 16.43 kN

� 2
40 mm
—–—–
20 mm

115 N/mm2 � 1.4(0.005P)

P
—–—–————–
(20 mm)(10 mm)

P � 16.43(103) N



E X A M P L E 4.14

The steel strap shown in Fig. 4–27 is subjected to an axial load of 80 kN.
Determine the maximum normal stress developed in the strap and the
displacement of one end of the strap with respect to the other end. The
steel has a yield stress of and Est = 200 GPa.sY = 700 MPa,

80 kN80 kN

A B C D

300 mm 800 mm 300 mm

10 mm

20 mm

6 mm

40 mm

Fig. 4–27

Solution

Maximum Normal Stress. By inspection, the maximum normal stress
occurs at the smaller cross section, where the shoulder fillet begins at B
or C. The stress-concentration factor is determined from Fig. 4–23. We
require

Thus,
The maximum stress is therefore

Ans.

Notice that the material remains elastic, since 

Displacement. Here we will neglect the localized deformations
surrounding the applied load and at the sudden change in cross section
of the shoulder fillet (Saint-Venant’s principle). We have

Ans.sA>D = 2.20 mm

+ b 8011032 N10.8 m2
10.02 m210.01 m2[20011092 N>m2]

r
dA>D = a

PL

AE
= 2b 8011032 N10.3 m2

10.04 m210.01 m2[20011092 N>m2]
r

640 MPa 6 sY = 700 MPa.

smax = K
P

A
= 1.6B 8011032 N

10.02 m210.001 m2R = 640 MPa

K = 1.6.

w
h

=
40 mm
20 mm

= 2
r

h
=

6 mm
20 mm

= 0.3,



]Fig. 4–30a

]Fig. 4–30c

E X A M P L E 4.15

Two steel wires are used to lift the weight of 15 kN (
 1.5 kg), Fig. 4–30a.
Wire AB has an unstretched length of 5 m and wire AC has an
unstretched length of 5.0075 m. If each wire has a cross-sectional area
of 30 mm2, and the steel can be considered elastic perfectly plastic as
shown by the graph in Fig. 4–30b, determine the force in each wire
and its elongation.

Solution

By inspection, wire AB begins to carry the weight when the hook is lifted.
However, if this wire stretches more than 0.01 m, the load is then carried
by both wires. For this to occur, the strain in wire AB must be

�AB � ———— � 0.0015

which is less than the maximum elastic strain, Fig. 4–30b.
Furthermore, the stress in wire AB when this happens can be determined
from Fig. 4–30b by proportion; i.e.,

As a result, the force in the wire is thus

FAB � �ABA � (308.82 N/mm2)(30 mm2) � 9264.6 N � 9.26 kN

Since the weight to be supported is 15 kN, we can conclude that both
wires must be used for support.

Once the weight is supported, the stress in the wires depends on the
corresponding strain. There are three possibilities, namely, the strains in
both wires are elastic, wire AB is plastically strained while wire AC is
elastically strained, or both wires are plastically strained. We will begin
by assuming that both wires remain elastic. Investigation of the free-body
diagram of the suspended weight, Fig. 4–30c, indicates that the problem
is statically indeterminate. The equation of equilibrium is

 sAB = 44.12 ksi

 
0.0017
50 ksi

=
0.0015
sAB

PY = 0.0017,

s–P

σ (MPa)

∋
0.0017

350

(b)

(mm/mm)

5.0075 m5 m

A

CB

(a)

Fig. 4–30

T

15 kN (c)

ACT AB

0.0015
–——–––
350 MPa

0.0075 m
—–—–––

5 m

308.82 MPa



]Fig. 4–30d

TAB � TAC � 15 kN � 0 (1)

Since AC is 0.0075 m longer than AB, then from Fig. 4–30d,
compatibility of displacement of the ends B and C requires that

�AB � 0.0075 m � �AC (2)

The modulus of elasticity,Fig.4–30b, is Est�350MPa/0.0017� 205.9(103)MPa.
Since this is a linear–elastic analysis, the load–displacement relationship
is and therefore

——————————— � 0.0075 m � ———————————

5TAB � 46.3275 � 5.0075TAC (3)

Solving Eqs. 1 and 3, we have

TAB � 12.135 kN

TAC � 2.865 kN

The stress in wire AB is thus

This stress is greater than the maximum elastic stress allowed 
(�Y � 350 MPa), and therefore wire AB becomes plastically strained and 
supports its maximum load of

TAB � 350 MPa (30 mm2) � 10.5 kN Ans.

From Eq. 1,

TAB � 4.5 kN Ans.

Note that wire AC remains elastic since the stress in the wire is 
�AC � 4.5(103) N/30 mm3 � 150 MPa � 350 MPa. The corresponding
elastic strain is determined by proportion, Fig. 4–30b; i.e.,

�AC � 0.000729

The elongation of AC is thus

�AC � (0.000729)(5.0075) � 0.00365 m Ans.

Applying Eq. 2, the elongation of AB is then

�AB � 0.0075 � 0.00365 � 0.01115 m Ans.

PAC
10 ksi

=
0.0017
50 ksi

sAB =
2.60 kip

0.05 in2 = 52.0 ksi

d = PL>AE,

+qgFy = 0;

Final position

B
C

δAC

δAB = 0.0075 + δAC

(d)

Initial position

A

5 m 5.0075 m

� 404.5 MPa

TAB(5 m)
——————————––
30(10�6)[205.9(106) kPa]

TAC(5.0075 m)
——————————––
30(10�6)[205.9(106) kPa]

12.135(103) N
—————––

30 mm2

�AC———––
150 MPa

0.0017
———––
350 MPa



E X A M P L E 4.16

The bar in Fig. 4–31a is made of steel that is assumed to be elastic
perfectly plastic, with Determine (a) the maximum value
of the applied load P that can be applied without causing the steel to
yield and (b) the maximum value of P that the bar can support. Sketch
the stress distribution at the critical section for each case.

Solution

Part (a). When the material behaves elastically, we must use a stress-
concentration factor determined from Fig. 4–23 that is unique for the
bar’s geometry. Here

The maximum load, without causing yielding, occurs when 
The average normal stress is Using Eq. 4–7, we have

Ans.

This load has been calculated using the smallest cross section. The
resulting stress distribution is shown in Fig. 4–31b. For equilibrium, the
“volume” contained within this distribution must equal 9.14 kN.

Part (b). The maximum load sustained by the bar causes all the material
at the smallest cross section to yield. Therefore, as P is increased to the
plastic load it gradually changes the stress distribution from the elastic
state shown in Fig. 4–31b to the plastic state shown in Fig. 4–31c. We
require

Ans.

Here equals the “volume” contained within the stress distribution,
which in this case is Pp = sY A.

Pp

Pp = 16.0 kN

 25011062 Pa =
Pp

10.002 m210.032 m2

 sY =
Pp

A

Pp,

PY = 9.14 kN

25011062 Pa = 1.75B PY
10.002 m210.032 m2R

sY = KaPY
A
bsmax = Ksavg;

savg = P>A.
smax = sY.

w
h

=
40 mm

140 mm - 8 mm2 = 1.25

r

h
=

4 mm
140 mm - 8 mm2 = 0.125

sY = 250 MPa.

P

2 mm

40 mm

4 mm

P

4 mm

(a)

PY

σ Y

(b)

Pp

σY

(c)

Fig. 4–31



E X A M P L E 4.17

The rod shown in Fig. 4–33a has a radius of 5 mm and is made from an
elastic-perfectly plastic material for which 
Fig. 4–33b. If a force of is applied to the rod and then
removed, determine the residual stress in the rod and the permanent
displacement of the collar at C.

Solution

The free-body diagram of the rod is shown in Fig. 4–33b. By inspection,
the rod is statically indeterminate. Application of the load P will cause
one of three possibilities, namely, both segments AC and CB remain
elastic, AC is plastic while CB is elastic, or both AC and CB are plastic.

An elastic analysis, similar to that discussed in Sec. 4.4, will produce
and at the supports. However, this results in a

stress of

in segment AC, and

in segment CB. Since the material in segment AC will yield, we will
assume that AC becomes plastic, while CB remains elastic.

For this case, the maximum possible force developed in AC is

and from the equilibrium of the rod, Fig. 4–33b,

The stress in each segment of the rod is therefore

Residual Stress. In order to obtain the residual stress, it is also necessary
to know the strain in each segment due to the loading. Since CB responds
elastically,

dC =
FB LCB
AE

=
127.0 kN210.300 m2

p10.005 m22 [7011062 kN>m2]
= 0.001474 m

sCB =
27.0 kN

p10.005 m22 = 344 MPa 1tension2 6 420 MPa 1OK2
sAC = sY = 420 MPa 1compression2

FB = 60 kN - 33.0 kN = 27.0 kN

 = 33.0 kN

 1FA2Y = sY A = 42011032 kN>m2 [p10.005 m22]

sCB =
15 kN

p10.005 m22 = 191 MPa 1tension2

sAC =
45 kN

p10.005 m22 = 573 MPa 1compression2 7 sY = 420 MPa

FB = 15 kNFA = 45 kN

*

P = 60 kN
E = 70 GPa,sY = 420 MPa,

100 mm
300 mm

CA BP = 60 kN

(a)

C P= 60 kNA B
FA FB

(b)

Fig. 4–33



Thus,

Also, since is known, the strain in AC is

Therefore, when P is applied, the stress–strain behavior for the material in
segment CB moves from O to Fig. 4–33c, and the stress–strain behavior
for the material in segment AC moves from O to If the load P is applied
in the reverse direction, in other words, the load is removed, then an elastic
response occurs and a reverse force of and must
be applied to each segment. As calculated previously, these forces produce
stresses (tension) and (compression),and
as a result the residual stress in each member is

Ans.
Ans.

This tensile stress is the same for both segments, which is to be expected.
Also note that the stress–strain behavior for segment AC moves from to

in Fig. 4–33c, while the stress–strain behavior for the material in segment
CB moves from to 

Permanent Displacement. From Fig. 4–33c, the residual strain in CB is

so that the permanent displacement of C is

Ans.

We can also obtain this result by determining the residual strain 
in AC, Fig. 4–33c. Since line has a slope of E, then

Therefore

Finally,

Ans.

*The possibility of CB becoming plastic before AC will not occur because when point C
deforms, the strain in AC (since it is shorter) will always be larger than the strain in CB.

dC = P¿AC LAC = -0.006555 1100 mm2 = 0.656 mm;

P¿AC = PAC + dPAC = -0.01474 + 0.008185 =  -0.006555

dPAC =
ds

E
=
1420 + 1532106 Pa

7011092 Pa
= 0.008185

B¿D¿
P¿AC

dC = P¿CB LCB = 0.002185 1300 mm2 = 0.656 mm;

P¿CB =
s

E
=

15311062 Pa

7011092 Pa
= 0.002185

C¿.A¿
D¿

B¿

1sCB2r = 344 MPa - 191 MPa = 153 MPa

1sAC2r = -420 MPa + 573 MPa = 153 MPa

sCB = 191 MPasAC = 573 MPa

FB = 15 kNFA = 45 kN

B¿.
A¿,

PAC =
dC

LAC
= -

0.001474 m
0.100 m

= -0.01474

dC

PCB =
dC

LCB
=

0.001474 m
0.300 m

= +0.004913

– 420

420
344

153
A�

E
C�

AC

CB
� CB

= 0.004911
Y = 0.0060

AC
= – 0.01473

Y = – 0.0060 D�

B� δ

σ (MPa)

∋

(c)

∋∋
∋

∋

∋
∋ O (mm/mm)


