
Assignment 2: Improve one instruction assembler

One instruction assembler (ASS) is a program to convert any string put in the data segment to MIPS32
machine code and run the converted code. However, ASS capacity is very limited. It can convert only
one instruction“jr ra” and it will put 0x0 for other things else.

The implementation is described by state diagram shown in Figure 1.

Run and try out ASS.
And, help improving it.

Tasks
1. Extending ASS register reference.
Extend ASS to be able to take $s0 as a valid register reference, so that “jr $s0\n” will be recognized
and get its corresponding machine code.

2. Handling white spaces.
Improve ASS functionality so that the following features are included.
a) White spaces coming first or last in a line do not change the validity of the instruction: ASS should
treat “ jr $ra\n”, “jr $ra \n”, and “ jr $ra \n” as a valid instruction “jr $ra”.
b) Multiple white spaces are allowed, e.g. “jr $ra\n” should be as good as “jr $ra\n”.

3. Find flaws in the state diagram.
Identify at least a sequence of strings that ASS could not work as expected.

B1. * Bonus*: Handling starting character.
A code beginning with “\n” or containing “\n\n” would make ASS miss the following “jr $ra\n”.
For example, instead of converting “\njr $ra\n” to 0x00000000 (for '\n') and 0x03E00008 (for
'jr $ra\n'), ASS could not recognize the line of nothing (“\n”) and would just inadvertently put
0x00000000 for “\njr $ra\n”. Fix this flaw.

B2. * Bonus *: Improving termination.
According to the state diagram, ASS would not be able to recognize the terminating character “;” when
it occurs in other states but state =””. Fix this so that whenever the terminating character shows up,
ASS to go to the termination state.

B3. * Bonus *: Extending ASS to include another instruction.
Extend ASS to be able to recognize another instruction, but not “jr” nor “nop”.

1 Of 6 08/09/11

2 Of 6 08/09/11
Figure 1: State diagram of ASS

Code of one instruction assembler (for QtSpim)

Program to read a number and print its square
.data

myasm: .asciiz "asm \njr $ra\n ISA \njr $ra\nMIPS32;"

#.data 0x10010024 (Program has to be put in address between 0x400000 and
0x10000000. See Fig 3.22 P&H2e)
mccode: .asciiz "!!!! The m/c code will be here. !!!!"
expect to see "00000000;03E00008;00000000;03E00008

.globl main
.text

main:
NOP #START PROGRAM 00First
initialization

la $s0, myasm # $s0 <- base address of myasm
la $s1, mccode # $s1 <- base address of mccode
add $s2, $zero, $zero # $s2 <- byte pointer (increment by 1)
add $s3, $zero, $zero # $s3 <- output pointer (increment by 4)
addi $s7, $zero, 0xffffffff # $s7 <- 0xffffffff

newline:
State = A new line

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = 'j'.
li $t2, 0x6A # j: 0x6A; State = A new line
bne $t0, $t2, testfalse

State = "j"

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = 'r'.
li $t2, 0x72 # r: 0x72; State = "j"
bne $t0, $t2, testfalse

3 Of 6 08/09/11

State = "jr"

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = ' '.
li $t2, 0x20 # <space>: 0x20; State = " "
bne $t0, $t2, testfalse

State = "jr "

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = '$'.
li $t2, 0x24 # $: 0x24; State = "jr "
bne $t0, $t2, testfalse

State = "jr $"

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = 'r'.
li $t2, 0x72 # r: 0x72; State = "jr $"
bne $t0, $t2, testfalse

State = "jr $r"

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = 'a'.
li $t2, 0x61 # a: 0x61; State = "jr $r"
bne $t0, $t2, testfalse

State = "jr $ra"

4 Of 6 08/09/11

read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = '\n'.
li $t2, 0x0A # \n: 0x0A (Line Feed); State = "jr $ra"
bne $t0, $t2, testfalse

State = "jr $ra\n"

put m/c for jr $ra into the target address.
li $t3, 0x03E00008 # 0b0000 0011 1110 0000 0000 0000 0000 1000
add $t1, $s1, $s3
addi $s3, $s3, 4
sw $t3, 0($t1) # putting m/c code; State = "jr $ra\n"

move next
j newline

testfalse:
State = "":

#read byte.
add $t1, $s0, $s2 # $t1 has current byte address
addi $s2, $s2, 1# increase the byte pointer
lb $t0, 0($t1) # $t0 <- read byte

check if byte = '\n'.
li $t2, 0x0A # \n: 0x0A (Line Feed); State = ""
bne $t0, $t2, checkEndChr

State = "\n":

put 0x0 into the target addr.
add $t3, $zero, $zero # $t3 <- 0
add $t1, $s1, $s3
addi $s3, $s3, 4
sw $t3, 0($t1) # putting 0x0; State = "\n"

move next
j newline

checkEndChr:
check if byte = ';' (Is it ";"?)
li $t2, 0x3B # ;: 0x3B; State = ";"

5 Of 6 08/09/11

bne $t0, $t2, testfalse

State = "Terminated":

$s7 = 0
add $s7, $zero, $zero

PC = target addr.
jr $s1 # PC = Address of m/c

NOP #END PROGRAM
end:

li $v0,10 #System call code to Exit
syscall #Call OS to Exit the program

mccode:
nop
nop # expect to see jr $ra put here.
nop
nop

6 Of 6 08/09/11

