
Assignment 3: Building an ALU.

ALU is a unit performing arithmetic and logic operations. VHDL codes provided in this assignment are
to investigate gate-level construction of ALU and to verify the ALU behavior through simulation.

VHDL is a hardware description language. It is to explore design such that hardware schematic can be
synthesized from it, a real hardware can be implemented based on it, and hardware behavior can be
examined with simulation provided by many of its vendors, including by open source community.

Tasks

0a. Set up VHDL synthesis and simulation tools.
The assignment is prepared and tested with Xilinx ISE Design Suite 13.2, which can be downloaded
from:
http://www.xilinx.com/support/download/index.htm.

The choice of synthesis and simulation tools is yours. However, the submitted assignment will be tested
with Xilinx ISE Design Suite 13.2.

0b. Familiarize with VHDL tools and language itself. Synthesize and simulate CH04 project
provided in the appendix.

The CH04 project is to implement a one-bit ALU, as shown in Fig. 4.17 of the class textbook,
Computer Organization & Design by Patterson and Hennessy. The figure is re-illustrated here in Figure
1. The upper schematic (schematic a) is what is provided. The lower schematic (schematic b) is what
you will work for your task 2. For schematic a, the one-bit ALU takes a, b, CarryIn as input,
Binvert and Operation signals as control signals, and then provides Result and CarryOut as
output.

1. Make an ALU for the most significant bit.
The provided BitALU (see Appendix) is for 31 least significant bits. It does not have overflow
detection. The one-bit ALU for the most significant bit has to be able to detect overflow occurrence
from either addition or subtraction.

a) When does overflow occur? Complete the truth table (Table 1), when am and bm, are two most
significant bits of two adding operands; Binvm is a signal controlling inversion of bm; and summ is the
result from a one-bit full adder at the most significant bit.
Using notation that overflow = 1 means that overflow occurs and overflow = 0 means otherwise.
Note: Binvm = 1 indicates that the operation is actually subtraction.

b) Write boolean expression of Overflow in terms of sums of products (SOP) of am, bm, Binvm, and
summ.

c) Create a module detecting overflow. Synthesize, Simulate, and manually verify its functionality.
(Your report should provide code, synthesized schematic, simulation waveform, and concluding hand
verification.)

1 08/22/11

http://www.xilinx.com/support/download/index.htm

d) Integrate an overflow detection module into a one-bit ALU and create a one-bit ALU for MSB
(according to schematic b of Figure 1). Synthesize, Simulate, and manually verify its functionality.
(Your report should provide code, synthesized schematic, simulation waveform, and concluding hand
verification.)
Note: in addition to overflow detection unit, a one-bit ALU for MSB has a set signal as an extra output.
Don't forget to have it in your design.

Figure 1: A one-bit ALU (from Fig. 4.17 of
Patterson and Hennessy 2nd Ed. textbook)

2 08/22/11

Binvm am bm summ Overflow

A + B

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

A – B

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Table 1: Truth table of overflow given operation (Binv), operands (a and b), and result (sum) of the MSB.

2. Put 32 one-bit ALUs together to make a 32-bit ALU.
Put together 31 regular one-bit ALUs of the 31 least significant bits and a one-bit ALU for MSB of the
MSB. Synthesize, Simulate, and manually verify its functionalities.
(Your report should provide code, synthesized schematic, simulation waveform, and concluding hand
verification.)

a) What are Less and Set signals for?
You explain it and provide an example (or examples). Clues: it facilitates the set on less than
instruction (slt).

b) Put 32 one-bit ALUs together as shown in Figure 2 (a copy of Fig. 4.18 P&H 2e.).

c) Add zero detection as shown in Figure 3.

B1. * Bonus*: Improve the ALU efficiency with Carry Look-Ahead.

B2. * Bonus*: Create a multiplication module and other related modules, as necessary.

B3. * Bonus*: Create a division module and other related modules, as necessary.

3 08/22/11

Figure 2: A 32-bit ALU constructed from
32 1-bit ALUs.

Tips:
Bits 1 to 30 can be modeled with the same pattern. You can write each one out like other single

component. Alternatively, you can write a for loop to generate components for these 30 bits, as the
following code segment:

bits1to30: for i in 1 to 30 generate
ibit: BitALU port map(

a => a(i),
b => b(i),
cin => c(i),
Binvert => Binvert,
Lessin => '0',
Qo => qr(i),
cout => c(i+1),
operation => Operation

);
end generate;

, where a(i), b(i), c(i), …, Operation are corresponding input or internal signals.

4 08/22/11

Figure 3: (Fig. 4.19 P&H 2e) ALU with zero detection

Appendix
Project CH04 is to build a one-bit ALU, as shown in Fig. 4.17 of Patterson and Hennessy textbook.

Source file: BitALU.vhd

--
-- Company: comp. engr. KKU.
-- Engineer: TK
--
-- Create Date: 08:07:26 08/18/2011
-- Design Name:
-- Module Name: BitALU - Behavioral
-- Project Name: CH04
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created

5 08/22/11

-- Additional Comments:
-- "Try not to become a man of success, but rather try to become a man of value."
-- Albert Einstein.
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity BitALU is
 Port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 cin : in STD_LOGIC;
 Qo : out STD_LOGIC;
 cout : out STD_LOGIC;
 operation : in STD_LOGIC_VECTOR (1 downto 0);
 Binvert : in STD_LOGIC;

 Lessin : in STD_LOGIC);
end BitALU;

architecture Behavioral of BitALU is

component mux4TO1
port (sel : in STD_LOGIC_VECTOR(1 downto 0); in0, in1, in2, in3 : in

STD_LOGIC; Q : out STD_LOGIC);
end component;

component fulladder
port (a, b, ci: in STD_LOGIC; sum, co : out STD_LOGIC);

end component;

signal ANDout : STD_LOGIC;
signal ORout : STD_LOGIC;
signal ADDERout : STD_LOGIC;
signal bi : STD_LOGIC;

begin
bi <= ((not Binvert) and b) or (Binvert and not b);

ANDout <= a and bi;
ORout <= a or bi;
FA: fulladder port map (a, bi, cin, ADDERout, cout);

MX: mux4TO1 port map (sel => operation, in0 => ANDout, in1 => ORout,
in2 => ADDERout, in3 =>

Lessin, Q => Qo);

end Behavioral;

6 08/22/11

Source file: fulladder.vhd

--
-- Company: comp. engr. KKU.
-- Engineer: TK
--
-- Create Date: 08:19:31 08/18/2011
-- Design Name:
-- Module Name: fulladder - Behavioral
-- Project Name: Ch04
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
-- "You must be the change you wish to see in the world." - Gandhi
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity fulladder is
 Port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 ci : in STD_LOGIC;
 sum : out STD_LOGIC;
 co : out STD_LOGIC);
end fulladder;

architecture Behavioral of fulladder is
begin

sum <= (a xor b) xor ci;
co <= (a and b) or (b and ci) or (a and ci);

end Behavioral;

Source file: mux4TO1.vhd

--
-- Company: comp. engr. KKU.
-- Engineer: TK
--

7 08/22/11

-- Create Date: 08:33:14 08/18/2011
-- Design Name:
-- Module Name: mux4TO1 - Behavioral
-- Project Name: CH04
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
-- "Watch your thoughts; they become words. Watch your words; they become actions.
-- Watch your actions; they become habits. Watch your habits; they become character.
-- Watch your character; it becomes your destiny." -- Lao-Tze

--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity mux4TO1 is
 Port (sel : in STD_LOGIC_VECTOR (1 downto 0);
 in0 : in STD_LOGIC;
 in1 : in STD_LOGIC;
 in2 : in STD_LOGIC;
 in3 : in STD_LOGIC;
 Q : out STD_LOGIC);
end mux4TO1;

architecture Behavioral of mux4TO1 is

begin
 process (sel, in0, in1, in2, in3) is
 begin
 case Sel is
 when "00" => Q <= in0;
 when "01" => Q <= in1;
 when "10" => Q <= in2;
 when "11" => Q <= in3;
 when others => Q <= '0';
 end case;
 end process;

end Behavioral;

8 08/22/11

Figure 4: Synthesized RTL schematic of A 1-bit ALU.

Remark:

Verify that BitALU is the top module. Otherwise, select BitALU and Souce > Set as Top
Module.

Figure 5: A test bench (BitALU_tb) is
selected as a top module. Synthesis may
not work.

Figure 6: A BitALU is selected as the top
module.

Test bench file: BitALU_tb.vhd

9 08/22/11

--
-- Company: comp. engr. KKU.
-- Engineer: TK
--
-- Create Date: 13:33:08 08/18/2011
-- Design Name:
-- Module Name: BitALU_tb - Behavioral
-- Project Name: CH04
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
-- "Success is not final. Failure is not fatal. Only courage to continue that counts." -
-- Winston Churchill
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity BitALU_tb is
end BitALU_tb;

architecture Behavioral of BitALU_tb is

 COMPONENT BitALU
 Port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 cin : in STD_LOGIC;
 Qo : out STD_LOGIC;
 cout : out STD_LOGIC;
 operation : in STD_LOGIC_VECTOR (1 downto 0);
 Binvert : in STD_LOGIC;

 Lessin : in STD_LOGIC);
 END COMPONENT;

 SIGNAL sa : std_logic := '0';
 SIGNAL sb : std_logic := '0';
 SIGNAL scin : std_logic := '0';
 SIGNAL sQo : std_logic;
 SIGNAL scout : std_logic;
 SIGNAL sop : std_logic_vector (1 downto 0) := "00";

10 08/22/11

 SIGNAL sBinv : std_logic := '0';
 SIGNAL sLess : std_logic := '0';

 constant PERIOD : time := 10 ns;

begin

 BALU : BitALU
 PORT MAP (a => sa, b => sb, cin => scin,

Qo => sQo, cout => scout,
operation => sop,
Binvert => sBinv, Lessin => sLess);

 PROCESS -- running a, b, cin
 BEGIN
 RUN_LOOP : LOOP
 sa <= '0';

sb <= '0';
scin <= '0';

 WAIT FOR PERIOD;
 sa <= '0';

sb <= '0';
scin <= '1';

 WAIT FOR PERIOD;
 sa <= '0';

sb <= '1';
scin <= '0';

 WAIT FOR PERIOD;
 sa <= '0';

sb <= '1';
scin <= '1';

 WAIT FOR PERIOD;
sa <= '1';
sb <= '0';
scin <= '0';

 WAIT FOR PERIOD;
 sa <= '1';

sb <= '0';
scin <= '1';

 WAIT FOR PERIOD;
 sa <= '1';

sb <= '1';
scin <= '0';

 WAIT FOR PERIOD;
sa <= '1';
sb <= '1';
scin <= '1';

 WAIT FOR PERIOD;
 END LOOP RUN_LOOP;
 END PROCESS;

PROCESS -- running Operation, Binv, Less
 BEGIN

sop <= "00";
sBinv <= '0';

11 08/22/11

sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "00";
sBinv <= '1';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "01";
sBinv <= '0';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "01";
sBinv <= '1';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "10";
sBinv <= '0';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "10";
sBinv <= '1';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "11";
sBinv <= '0';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "11";
sBinv <= '0';
sLess <= '1';
WAIT FOR 8*PERIOD;
sop <= "11";
sBinv <= '1';
sLess <= '0';
WAIT FOR 8*PERIOD;
sop <= "11";
sBinv <= '1';
sLess <= '1';
WAIT FOR 8*PERIOD;

END PROCESS;

end Behavioral;

12 08/22/11

Figure 7: Simulation results (Simulation Run Time is set to 1000 ns).

Test bench: WordALU_tb.vhd

--
-- Company: comp. engr. KKU.
-- Engineer: TK
--
-- Create Date: 09:55:02 08/22/2011
-- Design Name:
-- Module Name: WordALU_tb - Behavioral
-- Project Name: Ch04
-- Revision 0.01 - File Created
-- Additional Comments:
-- If you think you can do a thing or think you can't do a thing, you're right.
-- Henry Ford

--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity WordALU_tb is
end WordALU_tb;

13 08/22/11

architecture Behavioral of WordALU_tb is

component WordALU is
 Port (a, b : in STD_LOGIC_VECTOR (31 downto 0);
 Binvert, CarryIn : in STD_LOGIC;
 Operation : in STD_LOGIC_VECTOR (1 downto 0);
 Result : out STD_LOGIC_VECTOR (31 downto 0);
 Overflow, Zero : out STD_LOGIC);
end component;

signal a, b : STD_LOGIC_VECTOR (31 downto 0);
signal Binvert, CarryIn : STD_LOGIC;
signal Operation : STD_LOGIC_VECTOR (1 downto 0);
signal Result : STD_LOGIC_VECTOR (31 downto 0);
signal Overflow, Zero : STD_LOGIC;

 constant PERIOD : time := 50 ns;

begin

walu: WordALU
port map (

a => a,
b => b,
Binvert => Binvert,
CarryIn => CarryIn,
Operation => Operation,
Result => Result,
Overflow => Overflow,
Zero => Zero);

PROCESS
 BEGIN

Binvert <= '0';
CarryIn <= '0';

-- AND --
Operation <= "00"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)
a <= "00111111111100000110000001101010";
b <= "01011011110000001010010011110010";
-- expect: "00011011110000000010000001100010" = '0x1bc02062'
WAIT FOR PERIOD;

-- OR --
Operation <= "01"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)
a <= "00111111111100000110000001101010";
b <= "01011011110000001010010011110010";
-- expect: "01111111111100001110010011111010" = '0x7ff0e4fa'
WAIT FOR PERIOD;

-- ADDITION --
-- A + B; A > 0, B > 0, no overflow

14 08/22/11

Binvert <= '0'; -- A + B
CarryIn <= '0';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "00111111111100000110000001101010";
b <= "00111111110000001010010011110010";
-- expect: "01111111101100010000010101011100" = 0x7fb1055c

WAIT FOR PERIOD;

-- A + B; A > 0, B > 0, overflow

Binvert <= '0'; -- A + B
CarryIn <= '0';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "01111111111100000110000001101010";
b <= "00111111110000001010010011110010";
-- expect: "10111111101100010000010101011100" = 0xbfb1055c

WAIT FOR PERIOD;

-- A + B; A < 0, B < 0, no overflow

Binvert <= '0'; -- A + B
CarryIn <= '0';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "11000100011001010011011000000000"; -- = 0xc4653600 = -1000000000
b <= "10111011101000100010101101000000"; -- = 0xbba22b40 = -1147000000
-- expect: "d10000000000001110110000101000000"; -- = 0x80076140 = -2147000000

WAIT FOR PERIOD;

-- A + B; A > 0, B < 0

Binvert <= '0'; -- A + B
CarryIn <= '0';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "01000100011001010011011000000000"; -- = 0x44653600 = 1147483648
b <= "10111011101000100010101101000000"; -- = 0xbba22b40 = -1147000000
-- expect: "?00000000000001110110000101000000"; -- = 0x00076140 = 483648

WAIT FOR PERIOD;

-- A + B; A < 0, B > 0

Binvert <= '0'; -- A + B
CarryIn <= '0';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "10111011101000100010101101000000"; -- = 0xbba22b40 = -1147000000
b <= "01000100011001010011011000000000"; -- = 0x44653600 = 1147483648
-- expect: "?00000000000001110110000101000000"; -- = 0x00076140 = 483648

15 08/22/11

WAIT FOR PERIOD;

-- A - B; A > 0, B > 0

Binvert <= '1'; -- A - B
CarryIn <= '1';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "00111111111100000110000001101010"; -- = 0x3ff0606a = 1072717930
b <= "00111111110000001010010011110010"; -- = 0x3fc0a4f2 = 1069589746

-- expect: "00000000001011111011101101111000" = 0x002fbb78 = 3128184

WAIT FOR PERIOD;

-- A - B; A > 0, B < 0, no overflow

Binvert <= '1'; -- A - B
CarryIn <= '1';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "00111111111100000110000001101010"; -- = 0x3ff0606a = 1072717930
b <= "11111111111111101100011110000000"; -- = 0xfffec780 = -80000

-- expect: "00111111111100011001100011101010" = 0x3ff198ea = 1072797930

WAIT FOR PERIOD;

-- A - B; A > 0, B < 0, overflow

Binvert <= '1'; -- A - B
CarryIn <= '1';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "01111111111100000110000001101010"; -- = 0x7ff0606a = 2146459754
b <= "11111111110000101111011100000000"; -- = 0xffc2f700 = -4000000

-- expect: "10000000001011010110100101101010"; = 0x802d696a ; 2150459754

WAIT FOR PERIOD;

-- A - B; A < 0, B < 0

-- <input code for this test case>

-- A - B; A < 0, B > 0, no overflow

-- <input code for this test case>

-- A - B; A < 0, B > 0, overflow

Binvert <= '1'; -- A - B
CarryIn <= '1';
Operation <= "10"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

a <= "11111111110000101111011100000000"; -- = 0xffc2f700 = -4000000
b <= "01111111111100000110000001101010"; -- = 0x7ff0606a = 2146459754

16 08/22/11

-- expect: "?01111111110100101001011010010110"; = 0x7fd29696 ; -2150459754
WAIT FOR PERIOD;

-- LESS (slt) --
Operation <= "11"; -- 00: AND, 01: OR, 10: ADDITION, 11: Less (slt)

-- a < b
a <= "00000000000000000000000000000101"; -- 5
b <= "00000000000000000000000000011100"; -- 28
WAIT FOR PERIOD;

-- a = b
a <= "00000000000000000000000000110110"; -- 54
b <= "00000000000000000000000000110110"; -- 54
WAIT FOR PERIOD;

-- a > b
a <= "00000000000000000000000000110110"; -- 54
b <= "00000000000000000000000000011100"; -- 28
WAIT FOR PERIOD;

-- a < b, a < 0, b < 0
a <= "11111111111111111111110111011111"; -- -545
b <= "11111111111111111111111011010100"; -- -300
WAIT FOR PERIOD;

-- a < b, a < 0, b > 0
a <= "11111111111111111111110111011111"; -- -545
b <= "00000000000000000000000100101100"; -- 300
WAIT FOR PERIOD;

 END PROCESS;
end Behavioral;

Illustration 1: Waveform captured from simulation with the given test bench (WordALU_tb.vhd)

17 08/22/11

	Appendix

