Chapter 2 STATICS OF PARTICLES

Forces are vector quantities; they add according to the parallelogram law. The magnitude and direction of the resultant \mathbf{R} of two forces \mathbf{P} and \mathbf{Q} can be determined either graphically or by trigonometry.

Any given force acting on a particle can be resolved into two or more components, i.e.., it can be replaced by two or more forces which have the same effect on the particle.

A force \mathbf{F} is said to have been resolved into two rectangular components if its components are directed along the coordinate axes. Introducing the unit vectors \mathbf{i} and \mathbf{j} along the x and y axes,

$$
\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}
$$

$$
\begin{gathered}
F_{y}=F \sin \theta \\
\tan \theta=\frac{F_{y}}{F_{x}} \\
F=\sqrt{F_{x}^{2}+F_{y}^{2}}
\end{gathered}
$$

When three or more coplanar forces act on a particle, the rectangular components of their resultant \mathbf{R} can be obtained by adding algebraically the corresponding components of the given forces.

$$
R_{x}=\sum R_{x} \quad R_{y}=\sum R_{y}
$$

The magnitude and direction of \mathbf{R} can be determined from
$\tan \theta=\frac{R_{y}}{R_{x}}$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

A force \mathbf{F} in three-dimensional space can be resolved into components

$$
F_{x}=F \cos \theta_{x} \quad F_{y}=F \cos \theta_{y}
$$

$$
F_{z}=F \cos \theta_{z}
$$

The cosines of θ_{x}, θ_{y}, and θ_{z} are known as the direction cosines of the force \mathbf{F}. Using the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}, we write
or

$$
\mathbf{F}=F\left(\cos \theta_{x} \mathbf{i}+\cos \theta_{y} \mathbf{j}+\cos \theta_{z} \mathbf{k}\right)
$$

A force vector \mathbf{F} in three-dimensions is defined by its magnitude F and two points M and N along its line of action. The vector $\overrightarrow{M N}$ joining points M and N is

$$
M N=d_{x} \mathbf{i}+d_{y} \mathbf{j}+d_{z} \mathbf{k}
$$

The unit vector λ along the line of action of the force is

$$
\lambda=\frac{\overrightarrow{M N}}{M N}=\frac{1}{d}\left(d_{x} \mathbf{i}+d_{y} \mathbf{j}+d_{z} \mathbf{k}\right)
$$

$$
\begin{aligned}
& \text { M(x, } \left.y_{1}, z_{1}\right) d_{x}=x_{2}-x_{1}<0
\end{aligned} \begin{aligned}
& \text { A force } \mathbf{F} \text { is } \\
& \text { defined as the } \\
& \text { product of } F \text { and } \\
& \lambda . \text { Therefore, }
\end{aligned}
$$

From this it follows that

$$
F_{x}=\frac{F d_{x}}{d} \quad F_{y}=\frac{F d_{y}}{d} \quad F_{z}=\frac{F d_{z}}{d}
$$

When two or more forces act on a particle in threedimensions, the rectangular components of their resultant \mathbf{R} is obtained by adding the corresponding components of the given forces.

$$
\begin{aligned}
& R_{x}=\sum F_{x} \\
& R_{y}=\sum F_{y} \\
& R_{z}=\sum F_{z}
\end{aligned}
$$

The particle is in equilibrium when the resultant of all forces acting on it is zero.

To solve a problem involving a particle in equilibrium, draw a free-body diagram showing all the forces acting on the particle. The conditions which must be satisfied for particle equilibrium are

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma F_{z}=0
$$

In two-dimensions, only two of these equations are needed

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0
$$

