
1 188 110 Computer Programming : Chapter 4 – Iterations

Iterations

2 188 110 Computer Programming : Chapter 4 – Iterations

Iteration

• The repetition of a statement or block of

statements in a program.

• Also called loops because of their cycle nature.

• Used in many programs, especially, when we

need to process arrays.

• Three iteration statements in C/C++

• The while statement,

• The do ... while statement

• The for statement.

3 188 110 Computer Programming : Chapter 4 – Iterations

The while statement

Syntax

 while (condition) statement;

statement

condition

 False

4 188 110 Computer Programming : Chapter 4 – Iterations

(cont'd.)

• If the condition is non-zero (“true”) the statement is

executed repeatedly until the condition evaluates

to zero.

• If the condition is zero (“false”) then the statement is

ignored and program execution jumps immediately

to the next statement.

5 188 110 Computer Programming : Chapter 4 – Iterations

Displaying “Hello World!”

Writing a C++ program to

Display 10 “Hello World!”

Display 100 “Hello World!”

Display n “Hello World!”

6 188 110 Computer Programming : Chapter 4 – Iterations

Displaying 1 to ...

Writing a C++ program to

Display all integer numbers from 1 to 10

Display all integer numbers from 1 to 100

Display all integer numbers from 1 to n

7 188 110 Computer Programming : Chapter 4 – Iterations

A Sum of Consecutive Integers

int main() {
 int n, i = 1;
 cout << "Enter a positive integer: ";
 cin >> n;
 long sum = 0;
 while (i <= n)
 sum = sum + i++; //one statement
 cout << "The sum of the first " << n
 << " integers is " << sum << endl;
}

8 188 110 Computer Programming : Chapter 4 – Iterations

A Sum of Consecutive Integers

int main() {
 int n, i = 1;
 cout << "Enter a positive integer: ";
 cin >> n;
 long sum = 0;
 while (i <= n) { //statement block
 i++;
 sum = sum + i;
 cout << “sum to “ << i << “is“ << sum << endl;
 }
 cout << "The sum of the first " << n
 << " integers is " << sum << endl;
}

9 188 110 Computer Programming : Chapter 4 – Iterations

A Sum of Reciprocals

int main() {
 int bound;
 cout << "Enter a positive integer: ";
 cin >> bound;
 double sum = 0.0;
 int i = 0;
 while (sum < bound) {
 sum = sum + 1.0/++i;
 }
 cout << "The sum of the first " << i
 << " reciprocals is " << sum << endl;
}

10 188 110 Computer Programming : Chapter 4 – Iterations

Repeating a computation

int main() {
 double x;
 cout << "Enter a positive number: ";
 cin >> x;
 while (x > 0) {
 cout << "Square root (" << x << ") = "
 << sqrt(x) << endl;
 cout << "Enter another positive number "
 << "(or 0 to quit): ";
 cin >> x;
 }
}

11 188 110 Computer Programming : Chapter 4 – Iterations

Fibonacci's Rabbits

The original problem that Fibonacci investigated (in

the year 1202) was about how fast rabbits could

breed in ideal circumstances.

Suppose a newly-born pair of rabbits, one male, one

female, are put in a field. Rabbits are able to mate at the

age of one month so that at the end of its second month

a female can produce another pair of rabbits. Suppose

that our rabbits never die and that the female always

produces one new pair (one male, one female) every

month from the second month on. The puzzle that

Fibonacci posed was...

How many pairs will there be in one year?

12 188 110 Computer Programming : Chapter 4 – Iterations

Fibonacci's Rabbits
1. At the end of the first month, they mate,
but there is still one only 1 pair.
2. At the end of the second month the female
produces a new pair, so now there are 2
pairs of rabbits in the field.
3. At the end of the third month, the original
female produces a second pair, making 3
pairs in all in the field.
4.At the end of the fourth month, the original
female has produced yet another new pair,
the female born two months ago produces
her first pair also, making 5 pairs

The number of pairs of rabbits in the field at the start of each month
is 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#Rabbits

13 188 110 Computer Programming : Chapter 4 – Iterations

Exercise #1

Print the first n Fibonacci numbers

Fibonacci number is defined as the following

f1 = 1

f2 = 1

f3 = f1 + f2 = 1 + 1 = 2 loop compute new value

f4 = f2 + f3 = 1 + 2 = 3 from old and older value

f5 = f3 + f4 = 2 + 3 = 5

...

fn = fn-2 + fn-1

14 188 110 Computer Programming : Chapter 4 – Iterations

The Fibonacci Numbers
int main() {
 int n;
 cout << "Enter a positive integer: ";
 cin >> n;
 cout << "First " << n << " Fib. numbers: ";
 if (n >= 1) cout << "1";
 if (n >= 2) cout << ", 1";
 long f_n, f_n_2 = 1, f_n_1 = 1;
 int i = 3;
 while (i <= n) {
 f_n = f_n_1 + f_n_2; // new value of fib
 cout << ", " << f_n; // print out
 f_n_2 = f_n_1; // old value become older
 f_n_1 = f_n; // new value become old one
 i++; // counting number
 }
 // go bake on looping
}

15 188 110 Computer Programming : Chapter 4 – Iterations

The Fibonacci Numbers
while (i <= n) {
 f_n = f_n_1 + f_n_2;
 cout << ", " << f_n;
 f_n_2 = f_n_1;

 f_n_1 = f_n;

 i++;
}

f_n = f_n_1 + f_n_2; 2 = 1 + 1
cout << ", " << f_n;
f_n_2 = f_n_1; = 1
f_n_1 = f_n; = 2
i++;

f_n = f_n_1 + f_n_2; 3 = 2 + 1
cout << ", " << f_n;
f_n_2 = f_n_1; = 2
f_n_1 = f_n; = 3
i++;

f_n = f_n_1 + f_n_2; 5 = 3 + 2
cout << ", " << f_n;
f_n_2 = f_n_1; = 3
f_n_1 = f_n; = 5
i++;

16 188 110 Computer Programming : Chapter 4 – Iterations

Terminating a Loop

int main() {
 int n, i = 1;
 cout << "Enter a positive integer: ";
 cin >> n;
 long sum = 0;
 while (true) {
 if (i > n) break;
 sum = sum + i;
 cout << i << “ : “ <<sum << “ “ << endl;
 i++;
 }
 cout << "The sum of the first "
 << n << " integers is " << sum << endl;
}

17 188 110 Computer Programming : Chapter 4 – Iterations

The do...while statement

Syntax

 do statement while (condition);

statement

condition

True

False

18 188 110 Computer Programming : Chapter 4 – Iterations

(cont'd.)

• The statement is executed repeatedly until the

condition evaluates to zero (“false”).

• This is the same as while except that the condition

is tested at the end of the loop instead of the

beginning.

19 188 110 Computer Programming : Chapter 4 – Iterations

Comparison

 cout << “begin” << endl;

 while(false) {
 cout << “in loop” << endl;
}

 cout << “end” << endl;

 output

 begin
 end

 cout << “begin” << endl;

 do {
 cout << “in loop” << endl;
 } while(false);

 cout << “end” << endl;

output

 begin
 inloop
 end

20 188 110 Computer Programming : Chapter 4 – Iterations

Comparison

 int i = 0;
 cout << “begin” << endl;

 while(i < 10) {
 cout << i << “ “ << endl;
 i++;
 }

 cout << “end ” << i << endl;

 output
 begin

 0 1 2 3 4 5 6 7 8 9 end 10

 int i = 0;
 cout << “begin” << endl;

 do {
 cout << i << “ “ << endl;
 i++;
 } while(i < 10);

 cout << “end ” << i << endl;

 output
 begin

 0 1 2 3 4 5 6 7 8 9 end 10

21 188 110 Computer Programming : Chapter 4 – Iterations

A Sum of Consecutive Integers .. again

int main() {
 int n, i = 0;
 cout << "Enter a positive integer: ";
 cin >> n;
 long sum = 0;
 do {
 sum = sum + i++;
 } while (i <= n);
 cout << "The sum of the first " << n
 << " integers is " << sum << endl;
}

22 188 110 Computer Programming : Chapter 4 – Iterations

Exercise #3

Write a program to print the first n factorial

numbers using do ... while.

Also try this exercise using while.

23 188 110 Computer Programming : Chapter 4 – Iterations

The Factorial Numbers

int main() {
 int n;
 cout << "Enter a positive integer: ";
 cin >> n;
 cout << "Factorial number : ";
 long f = 1, i = 1;
 do {
 cout << f << “ “;
 i++;
 f = f * i;
 } while (i <= n);
 cout << endl;
}

24 188 110 Computer Programming : Chapter 4 – Iterations

Exercise #4

Sequentially print all the factorial number that are

less than or equal to a given bound value using do ...
while.

25 188 110 Computer Programming : Chapter 4 – Iterations

The Factorial Numbers

int main() {
 int bound;
 cout << "Enter a positive integer: ";
 cin >> bound;
 cout << "Factorial number < " << bound
 << " : 1";
 long f = 1, i = 1;
 do {
 cout << ", " << f;
 i++;
 f = f * i;
 } while (f < bound);
 cout << endl;
}

26 188 110 Computer Programming : Chapter 4 – Iterations

The for statement

Syntax
for (initialization; condition; update) statement;

initialization

condition

statement update

 False

27 188 110 Computer Programming : Chapter 4 – Iterations

(cont'd.)

1.Evaluate initialization, which is used to declare

and/or initialize control variable(s) for the loop.

2.The condition is evaluated, before iteration occur.

3.Execute the statement.

4.Evaluate the update.

5.Repeat step 2 – 4.

28 188 110 Computer Programming : Chapter 4 – Iterations

A Sum of Consecutive Integers – for

int main() {
 int n;
 cout << "Enter a positive integer: ";
 cin >> n;
 long sum = 0;
 for (int i = 0; i <= n; i++)
 sum = sum + i;
 cout << "The sum of the first " << n
 << " integers is " << sum << endl;
}

29 188 110 Computer Programming : Chapter 4 – Iterations

Comparison

for (int i = 0; i<=10; i++)
 statement;

int i = 0;
while(i <= 10) {
 statement;
 i++;
}

30 188 110 Computer Programming : Chapter 4 – Iterations

Reusing for Loop Control Variable

int main() {
 int n;
 cout << "Enter a positive integer: ";
 cin >> n;
 long sum = 0;
 for (int i = 0; i < n/2; i++)
 sum += i;
 for (int i = n/2; i <= n ; i++)
 sum += i;
 cout << "The sum of the first " << n
 << " integers is " << sum << endl;
}

31 188 110 Computer Programming : Chapter 4 – Iterations

Loop variable

int main() {

 int i = 10;
 cout << “begin “ << i << endl;

 for (int i = 0; i <= 20; i++)
 cout << i;

 cout << endl;
 cout << "end loop " << i;

}

int main() {

 int i = 10;
 cout << “begin “ << i << endl;

 for (i = 0; i <= 20; i++)
 cout << i;

 cout << endl;
 cout << "end loop " << i;

}

32 188 110 Computer Programming : Chapter 4 – Iterations

Exercise #5

Try the factorial question using for.
 Print the first n factorial.

 Sequentially print the factorial number that is less than a

given bound value.

33 188 110 Computer Programming : Chapter 4 – Iterations

The Factorial Numbers .. again

int main() {
 long n;
 cout << "Enter a positive integer: ";
 cin >> n;
 long f = 1;
 cout << "Factorial number : " << f;
 for (int i = 1; i <= n; i++) {
 f = f * i;
 cout << ", " << f;
 }
 cout << endl;
}

34 188 110 Computer Programming : Chapter 4 – Iterations

The Factorial Numbers .. and again

int main() {
 long bound;
 cout << "Enter a positive integer: ";
 cin >> bound;
 cout << "Factorial number < " << bound
 << ":\n1";
 long f = 1;
 for (int i = 2; f < bound; i++) {
 cout << ", " << f;
 f = f * i;
 }
 cout << endl;
}

35 188 110 Computer Programming : Chapter 4 – Iterations

Exercise #6

Can we try to do a descent for loop ?

Let's try, just to print the number from n to 1.

36 188 110 Computer Programming : Chapter 4 – Iterations

Descending for Loop

int main() {
 int n;
 cout << "Enter a positive integer: ";
 cin >> n;
 for (int i = n; i > 0; i--)
 cout << " " << i;
}

37 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers

A prime number (or a prime) is a natural number

greater than 1 that has no positive divisors other

than 1 and itself.

Write a program to test if a given number is a

prime number or not

38 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers
int main() {
 long n;
 cout << "Enter a positive integer: ";
 cin >> n;
 bool is_prime = true;
 if (n >= 2) { // 2 is prime need to test here
 for(int i = 2; i < n ; i++) { // because
 if (n % i == 0) { // this statement fail to check 2
 is_prime = false; // is prime
 }
 }
 }
 if (is_prime)
 cout << n << “ is prime”;
 else
 cout << n << “ is not prime”;
}

39 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers (cont'd.)

 for(int i = 2; i < n ; i++) {
 if (n % i == 0) {
 is_prime = false;
 break;
 }
 }

 No need to test other numbers because the number can
be divided at just one, it is not prime.

40 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers (cont'd.)

If the number is has divisor by any event

numbers it is also has divisor by 2.

 20 % 4 = 0 => 20 % 2 = 0 is also true.

Just test if the number is a even number then it is

not prime, no need to check event divisors.

41 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers (cont'd.)
int main() {
 long n;
 cout << "Enter a positive integer: ";
 cin >> n;
 bool is_prime = true;
 if (n >= 3) { // 2 and 3 is prime
 if (n % 2 == 0) {
 is_prime = false;
 } else {
 for(int i = 3; i < n ; i += 2) {
 if (n % i == 0) {
 is_prime = false;
 break;
 }
 }
 }
 }
 if (is_prime) cout << n << “ is prime”;
 else cout << n << “ is not prime”;
}

42 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers (cont'd.)

It is no need to test from 2 to n-1 just testing from 2

to √n is enough, because √n x √n = n, if number

larger than √n the result of multiplication will

larger than n too.

..
long n;
..
cin >> n;
long limit = sqrt(n);
 ...
 for(int i = 3; i < limit ; i += 2)
 ...

43 188 110 Computer Programming : Chapter 4 – Iterations

Prime Numbers (cont'd.)

Using combine exit condition
int main() {
 long n;
 cout << "Enter a positive integer: ";
 cin >> n;
 long limit = sqrt(n);
 bool is_prime = true;

 if (n >= 3) {
 if (n % 2 == 0) is_prime = false;
 for(int i = 3; i < limit && is_prime ; i += 2)
 if (n % i == 0) is_prime = false;
 }

 if (is_prim) {
 cout << n << “ is prime”;
 } else {
 cout << n << “ is not prime”;
 }
}

44 188 110 Computer Programming : Chapter 4 – Iterations

Exercise #7

Find the minimum from all input integers

45 188 110 Computer Programming : Chapter 4 – Iterations

Control Input with a Sentinel

int main() {
 int n, count = 0, sum = 0;
 cout << "Enter positive integers "
 << (0 to quit): " << endl;
 for (;;) {
 cout << "\t" << count + 1 << " : ";
 cin >> n;
 if (n <= 0) break;
 ++count;
 sum += n;
 }
 cout << "The average of those " << count
 << "positive numbers is
 << float(sum)/count << endl;
}

46 188 110 Computer Programming : Chapter 4 – Iterations

Nested for Loops

#include <iostream>
#include <iomanip>

int main() {
 for (int x = 1; x <= 12; x++) {
 for (int y = 1; y <= 12; y++)
 cout << setw(4) << x * y;
 cout << endl;
 }
}

47 188 110 Computer Programming : Chapter 4 – Iterations

Nested for Loops

#include <iostream>
#include <iomanip>

int main() {
 cin << n;
 for (int x = 1; x <= n; x++) {
 for (int y = 1; y <= n; y++) {
 cout << '*';
 }
 cout << endl;
 }
}

48 188 110 Computer Programming : Chapter 4 – Iterations

Nested for Loops

#include <iostream>
#include <iomanip>

int main() {
 cin << n;
 for (int x = 1; x <= n; x++) {
 for (int y = 1; y <= n; y++) {
 if (x==1 || x==n || y ==1 ||y==n)
 cout << '*';
 else
 cout << ' ';
 }
 cout << endl;
 }
}

49 188 110 Computer Programming : Chapter 4 – Iterations

A break with Nested Loops

int main() {
 for (int x = 1; x <= 12; x++) {
 for (int y = 1; y <= 12; y++){
 if (y > x)
 break;
 else
 cout << setw(4) << x * y;
 }
 cout << endl;
 }
}

50 188 110 Computer Programming : Chapter 4 – Iterations

The continue Statement

The break statement skips the rest of the

statements in the loop's block, and jumps

immediately to the next statement outside of the

loop.

The continue statement is similar to the break

statement It skips the rest of the statements in the

loop's block, and transfers execution to the next

iteration of the loop.

51 188 110 Computer Programming : Chapter 4 – Iterations

Using continue

int main() {
 for (int i = 0; i<10;i++) {
 cout << "Top half :” << i << endl;
 if (i > 5) continue;
 cout << "Bottom half:" << i << endl;
 }
 cout << "Outside of loop.";
}

try if(i > 5) break;

52 188 110 Computer Programming : Chapter 4 – Iterations

Using continue

int main() {
 int i = 0;
 while(i < 10) {
 cout << "Top half :” << i << endl;
 if (i > 5) continue;
 cout << "Bottom half:" << i << endl;
 i++; // Aware of this
 }
 cout << "Outside of loop.";
}

53 188 110 Computer Programming : Chapter 4 – Iterations

Using a goto Statement

int main() {
 const int N = 5;
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 for (int k = 0; k < N; k++)
 if (i + j + k > N)
 goto esc;
 else
 cout << i + j + k << " ";
 cout << "* ";
 }
 esc: cout << "." << endl;
 }
}

54 188 110 Computer Programming : Chapter 4 – Iterations

Using a Flag to Break Out
int main() {
 const int N = 5;
 bool done = false; // 'done' is a flag
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N && !done; j++) {
 for (int k = 0; k < N && !done; k++)
 if (i + j + k > N)
 done = true;
 else
 cout << i + j + k << " ";
 cout << "* ";
 }
 cout << "." << endl;
 done = false;
 }
}

