Algorithms and Flowcharts

Kornchawal Chaipah, PhD
Computer Engineering Department, Khon Kaen University

Agenda

- Algorithms
- Flowchart components
- Flowchart rules
- Lots of examples

Algorithm

- A set of steps to provide a solution to a specific problem
- Steps on how to solve a problem

Characteristics of Algorithms

- Input: ≥ 0
- Input(s) or no input
- Output: ≥ 1
- At least an output
- Finite
- With an ending point
- Each instruction is defined clearly
- Each instruction is basic and easy to perform

Algorithm Representation

Psudo-Code

```
read n;
set fac = 1;
set i = 1;
while (i s n) {
    fac = fac * i;
    incr i;
}
print fac;
done;
```

Text Representation

Flowchart

Graphical Representation

Flowchart Components (1)

Arrow - indicate flow of steps in an algorithm

Terminator - denote a starting point ($1^{\text {st }}$ symbol) or an ending point (last symbol) of an algorithm

Flowchart Components (2)

Input/Output - denote input/output function in an algorithm

Process - processing of an algorithm, e.g. what you calculate, set/change values

Flowchart Components (3)

Decision - denote a decision making operation in an algorithm (branching), e.g. if .. then .. else

Connector - link between parts of a flowchart when the flowchart is unfit in a single page

Flowchart Rules

Pros and Cons

\checkmark Easy to understand the solution
Good for documentation
$\checkmark{ }^{* *}$ Guideline for coding **
\times Not suitable for large program

- Flowchart will be too large and complicated

Example \#1: F -> C

- Problem: convert Fahrenheit to Celsius
- What you know:

- Output: C, Input: F
- Process: $\mathrm{C}=(\mathrm{F}-32) * 5 / 9$

Example \#1: F -> C Flowchart

Terminator: Begin the program
Input: Get the value of F

Process: Calculate C

Output: Print the value of C

Terminator: End the program

Example \#2: Days -> Months+Days

- Problem: convert a number of days (d) into a number of months and days
- Assume 1 month = 30 days
- What you know:

Example \#2: Days -> Months+Days Flowchart

Example \#3: Swap

- Problem: swap 2 numbers
- From: $a=4, b=5$
- To: $a=5, b=4$
- What you know: we need a buffer!

Example \#3: Swap Flowchart

What are inputs, outputs, and process?

Example \#4: Final Grade

- Problem: sum scores of 4 subjects and assign a final grade based on a total score

	Total Marks	Grade
$598 ? \rightarrow$	>800	A
$598 ? \rightarrow$	$601-800$	B
$598 ? \rightarrow$	$401-600$	C
$598 ? \rightarrow$	$201-400$	D

- How to assign a final grade given a total score?
- Compare a total score within ranges -> Use Decision!

Example \#4: Final Grade Flowchart

Example \#4: Final Grade Flowchart

Example \#5: Factorial

- Problem: find a factorial of a number (n)
- What you know:

$$
\mathrm{n}!=1 * 2 * \ldots * n
$$

$1^{\text {st }}$ round: 1
$2^{\text {nd }}$ round: $1^{*} 2$
$3^{\text {rd }}$ round: $1^{*} 2^{*} 3$
$4^{\text {th }}$ round: $1 * 2 * 3 * 4$
$5^{\text {th }}$ round: $1^{*} 2^{*} 3^{*} 4 * 5$
fac $=1$ * $1=1$
$\mathrm{fac}=1^{*} 2=2$
$\mathrm{fac}=2 * 3=6$
$\mathrm{fac}=6^{*} 4=24$
$\mathrm{fac}=24 * 5=120$
$\mathrm{Q}:$ When to stop?
A: When this is n
(after the $\mathrm{n}^{\text {th }}$ round)

Example \#5: Factorial Flowchart

- What are inputs, outputs, and process?
- Where should we put a decision point?

Example \#5: Factorial (2)

- Same problem, different method
- Can have > 1 algorithm to solve the same problem
- Problem: find a factorial of a number (n)
- What you know:

$$
\begin{aligned}
& \text { Before: } n!=1 * 2 * \ldots * n \\
& \text { But also: } n!=n *(n-1) *(n-2) * \ldots * 1
\end{aligned}
$$

Example \#5: Factorial (2) Flowchart

- What are inputs, outputs, and process?
- Where should we put a decision point?
-What is different from the prev flowchart?

Example \#6: Sum

- Problem: Sum numbers from 1 to n
- What do you know?

Example \#6: Sum Flowchart

- What are inputs, outputs, and process?
- Where should we put a decision point?

Example \#7: Print Odd Numbers

- Problem: Print odd number from 1 to n
- What do you know?

Example \#7: Print Odd Numbers Flowchart

- What are inputs, outputs, and process?
- Where should we put a decision point?

Example \#8: Print Even Numbers

- Problem: Print even number from 1 to n
- What do you know?

Example \#8: Print Even Numbers Flowchart

- What are inputs, outputs, and process?
- Where should we put a decision point?
-What is different from the prev flowchart (odd numbers)?

Take Home Message

- Flowchart represents an algorithm
- How to solve a problem systematically
- Very helpful with coding
- 1 Start and 1 Stop (terminators)
- What are inputs, processes, decisions, and outputs?
- Also where to put them?
- A problem can have >1 solution
- Draw clearly and neatly and label branches

References

- คณาจารย์คณะวิศวกรรมศาสตร์. (n.d.). เอกสารชุดนำเสนอภาพและบรรยาย วิชาการเขียนโปรแกรม (ส่วนกลาง)
- คณาจารย์คณะวิศวกรรมศาสตร์. (n.d.). เอกสารประกอบการสอนวิชาการ เขียนโปรแกรม (ส่วนกลาง)
- รศ. วิโรจน์ ทวีปวรเดช. (2554). การเขียนโปรแกรมคอมพิวเตอร์ Computer Programming. พิมพ์ครั้งที่ 2 โรงพิมพัมหาวิทยาลัยขอนแก่น
- Cplusplus.com. (n.d.). C++ Documentation. สืบค้นเมื่อ 18 กุมภาพันธ์ 2555 , http://www.cplusplus.com/
- Cplusplus.com. (n.d.). Library Reference. สืบค้นเมื่อ 18 กุมภาพันธ์ 2555, http://www.cplusplus.com/
- ISO/IEC 14882 Programming Language - C++

