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* Biosynthesis pathways of purine and
pyrimidine nucleotides

 De novo synthesis

e Salvage pathway
 Regulation of nucleotide biosynthesis
 Formation of deoxynucleotides

 Degradation of purine/pyrimidine to
Uric acid

« Chemotherapeutic agent that affect
nucleotide synthesis
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Biological roles of nucleotides

1. Building block :
RNA (ribonucleotide: mrNA, tRNA, rRNA, miRNA)
DNA (oo, ribonucleotide)

2. Metabolic energy : ATP, ....oo.coooo .

3. Second messenger: cAMP, cGMP

4. Coenzyme: FAD*, NAD*,NADP™
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De novo synthesis of purine

H OH
5-phosphoribosyl 1-pyrophosphate
(PRPP)

H H
Inosinate (IMP)

Each atom of base is built

sequentiallyon ..............
molecule by multi-enzyme
complex
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FIGURE 22-32 Origin of the ring atoms of purines. This information
was obtained from isotopic experiments with '*C- or '°N-labeled pre-
cursors. Formate is supplied in the form of N'°-formyltetrahydrofolate.
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Regulation of purine synthesis

Ribose-5-P
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De novo synthesis of purine NT

1. &FVIULAACRIUADILUKUY oo
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wae CO,
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De novo synthesis
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De novo synthesis of pyrimidine NT

1. &9LUFBaUsaNaUIINALANAU PRPP
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De novo pathways of purine and pyrimidine

e |

Base is built on ribose

Base is built and

transferred to ribose

 Nearly identical in all living organism

e Cellular pools of nucleotides (other than
ATP) are quite small (1% or less of required)

l

cells must continue to
synthesize nucleotides

v

Limits the rate of
DNA replication




Deoxyribonucleotides are synthesized from ribonucleotides

Ribonuclotide

: : reductase _ _
Deoxyribonucleotides Ribonucleotides

Regulation at primary
regulatory sites
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Deoxyribonucleotides ¢<==== ribonucleotides

clutaredoxin thioredoxin
reductase redurctase

GS8G 2G5H FAD FADHa

glutathicne
reductass
NADPH + H NADPT NADPFH + HT NADPT

(a) (b

FIGURE 22—-39 Reduction of ribonucleotides to deoxyribonucleotides
by ribonucleotide reductase. Electrons are transmitted (blue arrows)
to the enzyme from NADPH via (a) glutaredoxin or (b) thioredoxin.
The sulfide groups in glutaredoxin reductase are contributed by two
molecules of bound glutathione (GSH; GS5C indicates oxidized glu-
tathione). Mote that thioredoxin reductase is a flavoenzyme, with FAD

as prosthetic group.
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Salvage Pathway
Free purine bases Hypoxanthine-guanine

©:> phosphoribosyltransferase

A genetic disorder, lacking of
@ W Hypoxanthine-guanine
phosphoribosyltransferase, results
OH OH In Lesch-Nyhan syndrome

Hypoxanthine and guanine arise constantly from the breakdown of
nucleic acids. PRPP levels rise and purines are overproduced by the de
novo pathway - high uric acid production - goutlike damage to tissue.
Brain is especially dependent on the salvage pathways.

Seen almost in male children by the age of 2 years, poorly coordinated and
mentally retarded. They are extremely aggressive and show compulsive self-
destructive tendencies: they hurt themselves by biting off their fingers, toes,

and lips. .



Catabolism
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Deficiency of this enzyme

leads to severe immuno- Xanthine oxidase
deficiency disease—>do not

survive unless isolated in a |C|) Human
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End products of purine catabolism

Excreted by:
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Low nucleotide

High .............. In blood and tissues

}

Excess uric acid deposited in joints, kidney

m Sodium urate crystal
4 Inflamed, painful,
" arthritic
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Gertrude Elion (1918-1999) and

George Hitchings (1905-1998)
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FIGURE 22-47 Allopurinol, an inhibitor of xanthine oxidase. Hypo-
xanthine is the normal substrate of xanthine oxidase. Only a slight al-
teration in the structure of hypoxanthine (shaded pink) yields the
medically effective enzyme inhibitor allopurinol. At the active site, al-
lopurinol is converted to oxypurinol, a strong competitive inhibitor
that remains tightly bound to the reduced form of the enzyme.
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Many chemotherapeutic agents target enzymes in
the nucleotide biosynthesis pathways
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Anticancer drugSZ @Orouracn - Salvage pathway
Inhibit DNA synthesis S o

- (5FU) ~ ‘:::>
Suicide enzyme F-dUMP
Methylene

Tetrahydrofolate I
/ Thymidylate

synthase
Tetrahydrofolate

\

[
NADP+ :
Dihydrofolate dTMP l
Dihydrofolate Tightly bound to
reductiase enzyme and
NADPH dihydrofolate

Methotrexate
Aminopterin
Trimethoprim
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Folate analogs






