Homework Chapter 4

Problem 4-1: Determine the magnitude of the resultant force acting at pin *A* of the hand punch. Given:

$$F = 40 \text{ N}$$

 $a = 0.75 \text{ m}$
 $b = 0.1 \text{ m}$
 $c = 1 \text{ m}$

Problem 4-2: Determine the magnitude of the reactions on the beam at *A* and *B*. Neglect the thickness of the beam.

Given:

$$F_1 = 600 \text{ N}$$

$$F_2 = 400 \text{ N}$$

$$\theta = 15^{\circ}$$

$$a = 4 \text{ m}$$

$$b = 8 \text{ m}$$

$$c = 3$$

$$d = 4$$

Problem 4-3: Determine the reactions on the bent rod which is supported by a smooth surface at *B* and by a collar at *A*, which is fixed to the rod and is free to slide over the fixed inclined rod.

Given:

F = 500 N	F	
M = 300 N m		bM
a = 0.9 m		
b = 0.9 m		c
c = 0.6m	$\sqrt{d^2 + e^2}$	$B = \int_{f}^{\sqrt{g^2 + f^2}} 3$
d = 3		
e = 4		
<i>f</i> = 12		
g = 5		

Problem 4-4: The ramp of a ship has a weight of *W* and a center of gravity at *G*. Determine the cable force in *CD* needed to just start lifting the ramp, (i.e., so the reaction at *B* becomes zero). Also, determine the horizontal and vertical components of force at the hinge (pin) at *A*.

Given:

W = 1000 N	a = 1.2 m
$\theta = 30 \deg$	b = 0.9 m
$\phi = 20 \deg$	c = 1.8 m

Problem 4-5: The articulated crane boom has a weight W and mass center at G. If it supports a load L, determine the force acting at the pin A and the compression in the hydraulic cylinder BC when the boom is in the position shown.

Problem 4-6: Determine the *x*, *y*, *z* components of reaction at the fixed wall *A*. The \mathbf{F}_2 force is parallel to the *z* axis and the \mathbf{F}_1 force is parallel to the *y* axis.

Given:

 $F_1 = 200 \text{ N}$ $F_2 = 150 \text{ N}$ a = 2 m b = 1 m c = 2.5 md = 2 m

Problem 4-7: If the cable can be subjected to a maximum tension **T**, determine the maximum force **F** which may be applied to the plate. Compute the *x*, *y*, *z* components of reaction at the hinge *A* for this loading.

Problem 4-8: The pipe assembly supports the vertical loads shown. Determine the components of reaction at the ball-and-socket joint A and the tension in the supporting cables BC and BD.

Problem 4-9: The member is supported by a pin at *A* and a cable *BC*. If the load at *D* is *W*, determine the *x*, *y*, *z* components of reaction at these supports.

Problem 4-10: The member is supported by a square rod which fits loosely through a smooth square hole of the attached collar at *A* and by a roller at *B*. Determine the *x*, *y*, *z* components of reaction at these supports when the member is subjected to the loading shown.

