Homework Chapter 5

Problem 5-1: Determine the force in each member of the truss and state if the members are in tension or compression.

Given:

$$
\begin{aligned}
& P_{1}=7 \mathrm{kN} \\
& P_{2}=7 \mathrm{kN}
\end{aligned}
$$

Problem 5-2: Determine the force in each member of the truss and state if the members are in tension or compression.

Given:

$$
\begin{aligned}
P_{1} & =0 \mathrm{kN} \\
P_{2} & =20 \mathrm{kN} \\
a & =2 \mathrm{~m} \\
b & =4 \mathrm{~m} \\
c & =4 \mathrm{~m}
\end{aligned}
$$

Problem 5-3: Determine the force in each member of the truss and state if the members are in tension or compression.

Problem 5-4: Determine the force members $B C, F C$, and $F E$, and state if the members are in tension or compression.

Given:

Problem 5-5: Determine the force in members JE and GF of the truss and state if these members are in tension or compression. Also, indicate all zero-force members.

Given:
$F_{1}=6 \mathrm{kN}$
$F_{2}=6 \mathrm{kN}$
$a=1.5 \mathrm{~m}$
$b=2 \mathrm{~m}$

Problem 5-6: Determine the force in members $C D$ and GF of the truss and state if the members are in tension or compression. Also indicate all zero-force members.

Given:

$$
\begin{aligned}
F_{1} & =1.5 \mathrm{kN} \\
F_{2} & =2 \mathrm{kN} \\
a & =1.5 \mathrm{~m} \\
b & =1 \mathrm{~m} \\
c & =2 \mathrm{~m} \\
d & =0.8 \mathrm{~m}
\end{aligned}
$$

Problem 5-7: Determine the horizontal and vertical components of force that pins A and C exert on the frame.

Given:

$$
\begin{aligned}
F_{1} & =1 \mathrm{kN} \\
F_{2} & =500 \mathrm{~N} \\
a & =0.2 \mathrm{~m} \\
b & =0.2 \mathrm{~m} \\
c & =0.4 \mathrm{~m} \\
d & =0.4 \mathrm{~m} \\
\theta & =45^{\circ}
\end{aligned}
$$

Problem 5-8: Determine the horizontal and vertical components of force which the pins at A, B, and C exert on member $A B C$ of the frame.

Given:

$$
\begin{aligned}
F_{1} & =400 \mathrm{~N} \\
F_{2} & =300 \mathrm{~N} \\
F_{3} & =300 \mathrm{~N} \\
a & =1.5 \mathrm{~m} \\
b & =2 \mathrm{~m} \\
c & =1.5 \mathrm{~m} \\
d & =2.5 \mathrm{~m} \\
e & =2.5 \mathrm{~m} \\
f & =1.5 \mathrm{~m} \\
g & =2 \mathrm{~m} \\
e & =\mathrm{a}+\mathrm{b}+\mathrm{c}-\mathrm{d}
\end{aligned}
$$

Problem 5-9: The nail cutter consists of the handle and the two cutting blades. Assuming the blades are pin connected at B and the surface at D is smooth, determine the normal force on the fingernail when a force of \mathbf{F} is applied to the handles as shown. The pin $A C$ slides through a smooth hole at A and is attached to the bottom member at C.

Given:
$F=5 \mathrm{~N}$
$a=6 \mathrm{~mm}$
$b=36 \mathrm{~mm}$

Problem 5-10: A force \mathbf{P} is applied to the handles of the pliers. Determine the force developed on the smooth bolt B and the reaction that pin A exerts on its attached members.

Given:
$P=40 \mathrm{~N}$
$a=31.25 \mathrm{~mm}$
$b=75 \mathrm{~mm}$
$c=37.5 \mathrm{~mm}$

