EE2-07: 555 IC Timer

Electrical Engineering, KKU

- To get familiarized with the LM 555 Timer IC and its usage.
- To design a monostable multivibrator circuit ("one-shot").
- To design an astable multivibrator circuit (free-running oscillator).

555 Timer pin layout

The trigger and reset inputs are active LOW inputs.

Output goes HIGH when triggered.

555 Timer specifications

- Supply voltage: 4.5 V to 18 V
- Power dissipation: 600 mW
- Threshold current: 0.1 mA
- Trigger current: 0.5 mA
- Maximum output source/sink current: 200 mA

555 Timer functional block diagram

The output of a 555 timer is either HIGH (close to $+V_{cc}$) or LOW (close to GND).

1. Monostable multivibrator

Each time the 555 timer is triggered, the output will go HIGH for a specified amount of time, then it will return to LOW and await another trigger signal.

2. Astable multivibrator

- The timer triggers itself periodically and becomes an oscillator, sending out a train of pulses.
- The duty cycle is always greater than 50%.

3. Astable multivibrator with a diode across R_b

To achieve a duty cycle of less than 50% or any value, a signal diode can be added in parallel with R_b . This will bypass R_b during the charging period (HIGH) of the cycle.

The voltage divider

Inside the 555 timer, there is a voltage divider that divides V_{cc} into thirds.

Voltage comparator 1 (Threshold vs. 2V_{cc}/3)

The voltage comparator 1 compares the threshold (pin 6) with $2/3 V_{cc}$.

Voltage comparator 2 (Trigger vs. V_{cc}/3)

The voltage comparator 2 compares $1/3 V_{cc}$ with the trigger input (pin 2).

RS flip-flop

Inverted-output buffer

Discharge transistor (Q₁)

Reset Transistor (Q₂)

Control voltage

P1 Monostable multivibrator

P1 Monostable multivibrator

output pulse width: $t = 1.1(R_a)C$

<mark>R1</mark> (10 points)

- Sketch the trigger signal, the voltage signal across the capacitor (Vc), and the output signal.
- Measure the output pulse width and compare the result with the theoretical value.
- Observe and describe the LED on/off behavior.

P2 Astable multivibrator (C = 2.2 μF)

 $t = t_{1}: \qquad V_{Th} = V_{Tr} = V_{cc}/3 \qquad \begin{array}{l} R = 0, \ S = 1 \\ Q_{1} \text{ is OFF (} \\ Q_{1} \text{ is OFF (} \\ V_{Th} < 2V_{cc}/3 \qquad R = 0, \ S = 0 \\ V_{cc}/3 < V_{Tr} \end{array}$

 $t = t_2$: $V_{Th} = V_{Tr} = 2V_{cc}/3$

 $R = 0, S = 1, Q = 1, Output = V_{cc}$ Q_1 is OFF (capacitor charging)

R = 0, S = 0, no change

R = 1, S = 0, Q = 0, Output = 0 Q_1 is ON (capacitor discharging)

P2 Astable multivibrator (C = 2.2 μF)

R2 (10 points)

- Sketch the voltage signal across the capacitor (V_c) and the output signal.
- Measure the time intervals for a HIGH output (t_{high}) and a LOW output $(t_{\text{low}}).$
- Determine the duty cycle, the period, and the frequency and compare the results with the theoretical values.
- Observe and describe the LED on/off behavior.

P3 Astable multivibrator (C = 1 μ F)

<mark>R3</mark> (10 points)

- Sketch the voltage signal across the capacitor (V_c) and the output signal.
- Measure the time intervals for a HIGH output (t_{high}) and a LOW output (t_{low}) .
- Determine the duty cycle, the period, and the frequency and compare the results with the theoretical values.
- Observe and describe the LED on/off behavior.
- Discuss the experimental results obtained from R2 and R3.

P4 Astable multivibrator with a diode across R_b

$$D = t_{high}/T = R_a/(R_a + R_b).$$

<mark>R4</mark> (10 points)

- Sketch the voltage signal across the capacitor (V_c) and the output signal.
- Measure the time intervals for a HIGH output (t_{high}) and a LOW output (t_{low}).
- Determine the duty cycle, the period, and the frequency and compare the results with the theoretical values.
- Observe and describe the LED on/off behavior.

- Use a 10x probe to measure the voltage across the capacitor C (V_c).
- Make sure that electrolytic capacitors have a correct polarity.

FINAL REPORT

Write a report on how this experiment is performed which should include the followings:

- 1. Describe the operation of each circuit.
- 2. Discuss the waveforms obtained at each section.
- 3. Discuss about the results obtained from R2 and R3.
- 4. Discuss about the results obtained from R2 and R4.

Q1 Describe the difference(s) between a square wave and a rectangular wave.

Q2 Consider the circuit in Figure 11, if we want the LED to be ON for 2 s and OFF for 2 s, what would be the values of the resistors R_a and R_b ?