EE2-10: T FLIP-FLOP AND A COUNTER CIRCUIT

Kittipitch Meesawat

Four Bits Binary Ripple Counter

(P1) Set the clock signal which is a square wave with $5 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{~Hz}$.

* Min volt is " 0 V ", Max volt is " 5 V ." This can be done using TTL output of the generator, or using offset of the main output.
(P2) Construct a 4-bits ripple counter using JK Flip-flops.
- Make it simple by constructing one flip-flop by one flip-flop (or two by two).
- Test it at each step.
- Drive LEDs with their active output, namely Q0, Q1, Q2, and Q3, through current limit resistors.
- Be careful about the LED poraity, and the resistor value.

Mod-10 Ripple Counter

(P3) Modify the circuit to reset its count whenever the count reaches " 10 " or (1010) 2 .

- Just add 3 AND gates.
- All AND gates are packed in one IC.
- All connections are not changed except the Reset pins of every flip-flop.
- Good planing make this step really fast.

Display counter result with 7-segments LEDs

(P4) Add the display module to the circuit. IC4 is a CD4511 and D1 is the 7-segment LEDs. R1 - R7 are 330- Ω resistors.

Display counter result with 7-segment LEDs

- You can keep your existing 4 LEDs if you like. It could help debuging you circuit, just in case.
- Conceptually, this consists of 2 circuits:
- The counter
- The decoder and display
- You can debug these 2 circuits separately.
- You can even construct these two circuits separately.
- Output of the counter is the input of the decoder.

A word from instructor

- Circuits can be considered as a composition of many smaller circuits.
- Build things from small to large.
- Solve problems from easy to difficult.
- Make them modular so debuging will be a lot easier.

The circuit itself is an old fashion. You may not encounter such a circuit in your working life ever. But it is an exercise for modular system which will never be outdated in the engineering world.

Q\&A

