

High-throughput sequencing analysis

362 732 Bioinformatics course, MD KKU

Kiatichai Faksri

(Ph.D., Medical Microbiology)
Faculty of Medicine, Khon Kaen University, Thailand

Objectives

- 1. Know and understand basics in NGS analysis
- 2. Understand the analysis pipeline of NGS analysis
- 3. Understand and be able to use the tools for NGS analysis
- 4. Be able to analyze the NGS from example organism (*M. tuberculosis*) and compare between the two genomes

Outline

- 1. Introduction of High throughput sequencing (HTS) analysis
- 2. Basic terminology
- 3. HTS platforms
- 4. Analysis pipeline
- 5. Technical information
- 6. Practice in HTS analysis (bacteria I)
- 7. Practice in HTS analysis (bacteria II)
- 8. Assignment

1

Introduction in NGS analysis

Genome Sequence Analysis

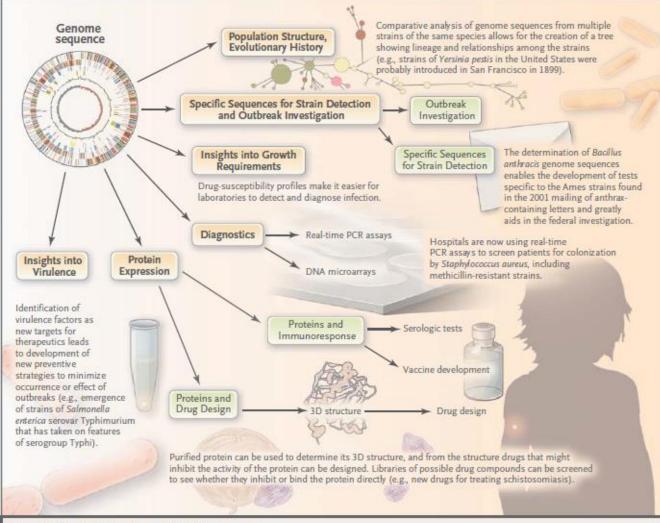


Figure 3. Microbial Genomics and Tool Development.

A genome sequence facilitates the development of a variety of tools and approaches for understanding, manipulating, and mitigating the overall effect of a microbe. The sequence provides insight into the population structure and evolutionary history of a microbe for epidemiologic investigation, information with which to develop new diagnostic tests and cultivation methods, new targets of drug development, and antigens for vaccine development.

Analysis purposes

- Detection of novel mutation associated with drug resistance
- Outbreak investigation and transmission analysis
- Differentiation between reinfection vs relapse
- Detection of variants associated with phenotypes
- Phylogentic analysis
- Etc.

Strategies for shotgun sequencing

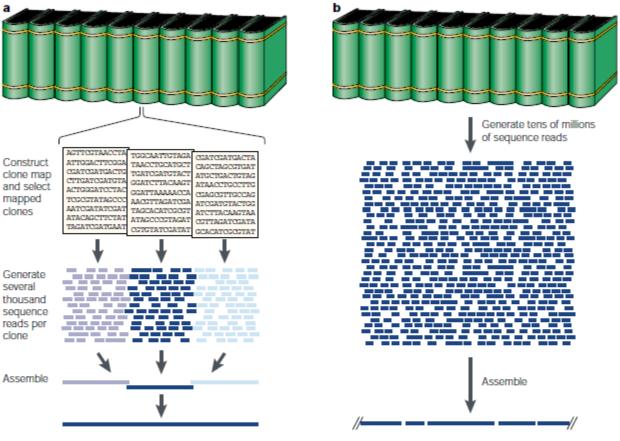
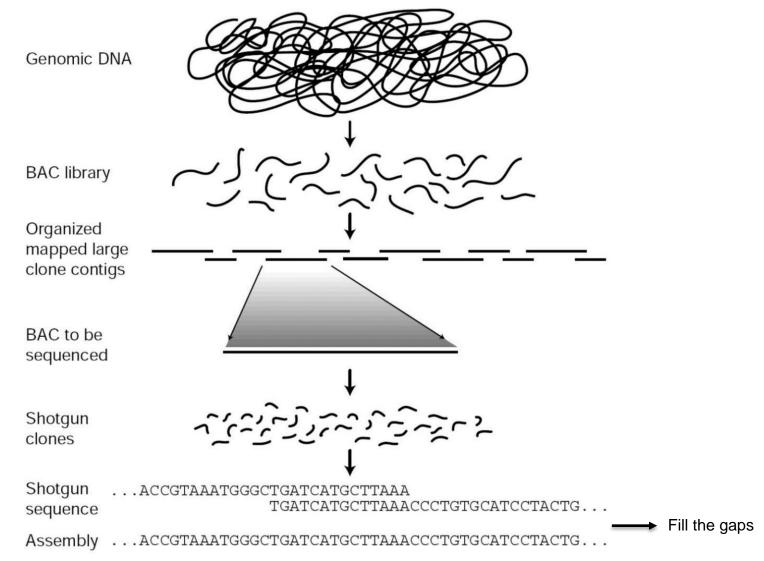



Figure 1 | **Two main shotgun-sequencing strategies. a** | Schematic overview of clone-by-clone shotgun sequencing. A representation of a genome is made by analogy to an encyclopaedia set, with each volume corresponding to an individual chromosome. The construction of clone-based physical maps produces overlapping series of clones (that is, contigs), each of which spans a large, contiguous region of the source genome. Each clone (for example, a bacterial artificial chromosome (BAC)) can be thought of as containing the DNA represented by one page of a volume. For shotgun sequencing, individual mapped clones are subcloned into smaller-insert libraries, from which sequence reads are randomly derived. In the case of BACs, this typically requires the generation of several thousand sequence reads per clone. The resulting sequence data set is then used to assemble the complete sequence of that clone (see FIGS 3,4). **b** | Schematic overview of whole-genome shotgun sequencing. In this case, the mapping phase is skipped and shotgun sequencing proceeds using subclone libraries prepared from the entire genome. Typically, tens of millions of sequence reads are generated and these in turn are subjected to computer-based assembly to generate contiguous sequences of various sizes.

Classical shotgun sequencing

Sample types

- Cell sample types
 - Single cell
 - Population
 - Communities (Metagenomics)
- Nucleic acid sample type
 - DNA = genomics, epigenetics
 - RNA = transcriptomic (and metatranscriptomics)
- Genome Sizes
 - Whole Genome
 - Targeted, e.g. exome sequencing

Omic analysis

DNA Level

Whole genome resequencing (WGS)

 Discover the genetic variations in a genome-wide range.

Exome Seq

- Discover the causative, susceptibility loci
- Discover rare/novel variants
- More economical and efficient

Target Region Seq

 Find the novel variants or validate the candidate variants in the target regions

Genotyping

- SNP and CNV detection in a genome-wide range
- Customized array for personal usage which is more flexible
- Validation of candidate pathogenetic genes or loci in large amount of samples

Single Cell Seq

- Genetic variation research at single cell level
- Explore cancer cells evolution during tumor progression

RNA Level

Transcriptome Seq

- Comprehensive analysis of differential gene expression
- · Discover novel genes
- RNA editing analysis (such as alternative splicing, cSNP, gene fusion, etc)

RNA-Seq (Quantification)

- Precise quantification of gene expression analysis that is suitable for large samples
- Discover disease-related functional genes

Small RNA Seq

- Gene expression analysis of miRNA
- Gene regulatory networks and targets study of mi RNA
- Discover disease-specific biomarkers

Non-coding RNA Seq

- Identify novel non-coding RNA
- Discover disease-specific biomarkers

Cell Line Seq

- Obtain a clear and comprehensive genetic patterns of the cell lines
- Obtain mutation information of high accuracy

Epigenetic Level

Whole Genome Bisulfite Seq (WGBS)

- DNA methylation research at whole genome-wide level
- High accuracy and high resolution(single-based)

MeDIP Seq

- Based on immunoprecipitation for methylated DNA enrichment
- Whole genome-wide DNA methylation research and costeffective

RRBS Seq

- Methylation analysis of promoter regions with substantial genome coverage
- Based on enzyme digestion and bisulfite treatment
- Good repeatability

ChIP Seq

- Genome-wide protein-DNA interaction studies
- Higher resolution, more precise and abundant than ChIP-chip

Protein Level

Proteome Profiling

- Analyze the component of protein mixtures
- Obtain comprehensive information of protein category, metabolic pathways, etc

Quantitative Proteomics

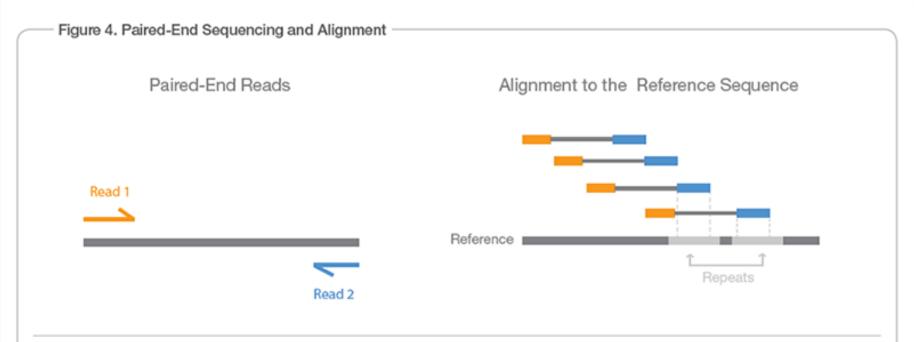
 Fast and accurate protein differential analysis for multiple samples

Modification Proteomics

 Fast and comprehensive analysis of protein modification spectrum for multiple samples

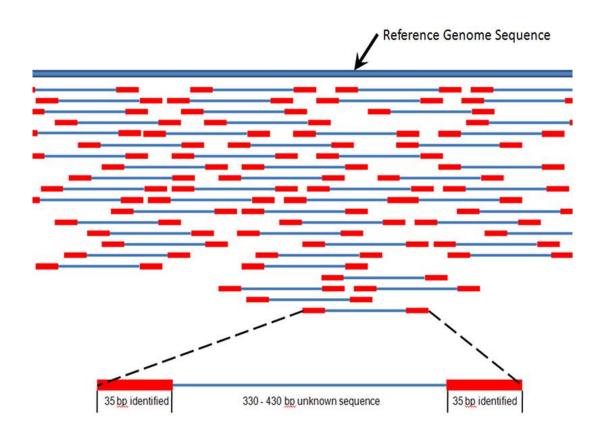
Target Proteomics

- Based on the technology of Multiple Reaction Monitoring(MRM)
- Validate the discovered biomarkers
- Identify protein modification and low abundant proteins


2

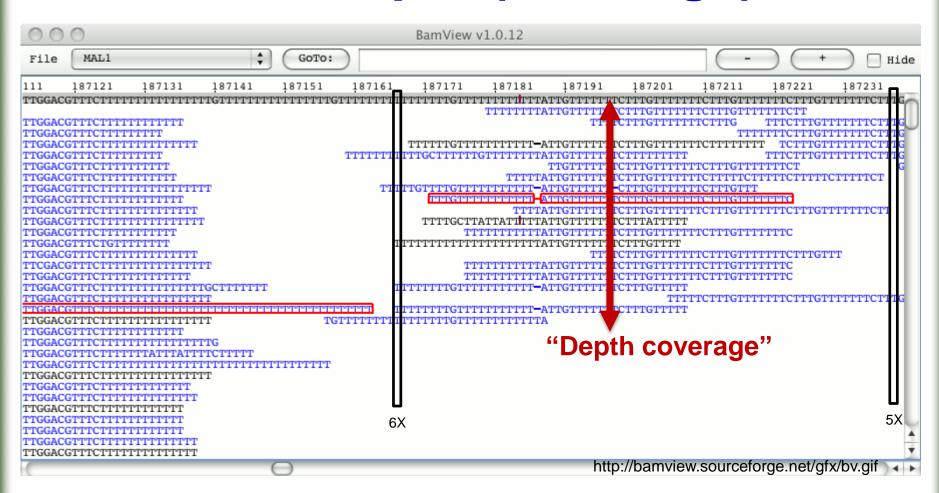
Basic terminology

Paired-end read

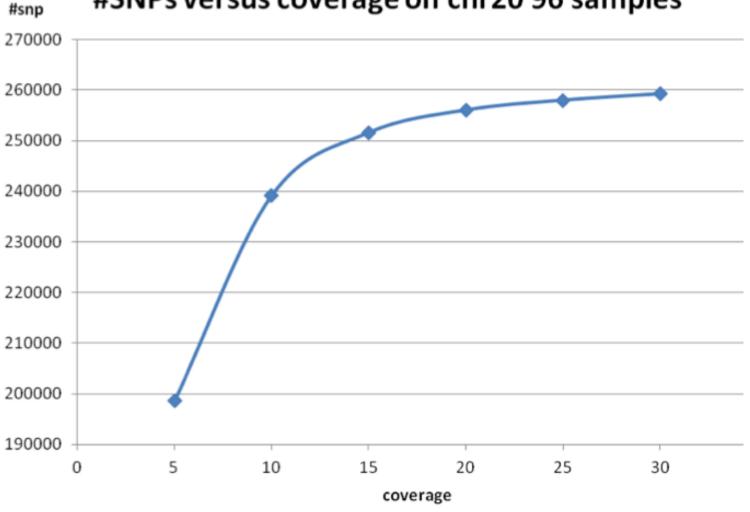


Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to map the reads over repetitive regions more precisely. This results in much better alignment of the reads, especially across difficult-to-sequence, repetitive regions of the genome.

Read length

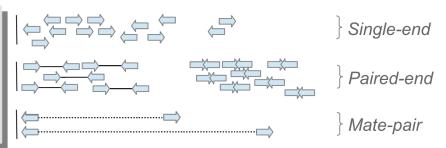

Region coverage

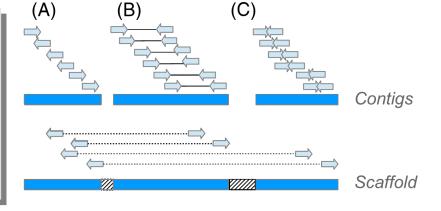
Read depth (coverage)

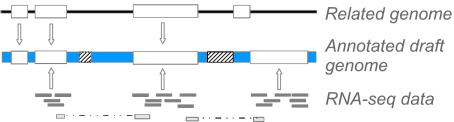

Number of bases /Genome length = estimated sequencing depth, e.g. 50X

Significance of sequencing coverage

#SNPs versus coverage on chr20 96 samples




Simplified illustration of the assembly process


Shotgun sequencing

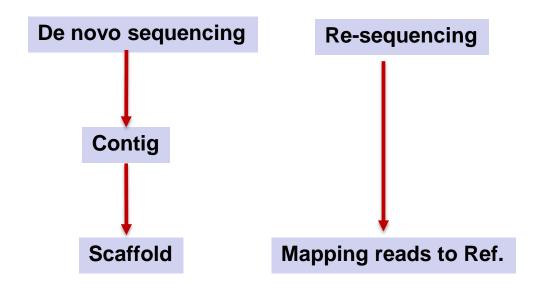
Genome assembly

Annotation

REVIEWS AND SYNTHESIS

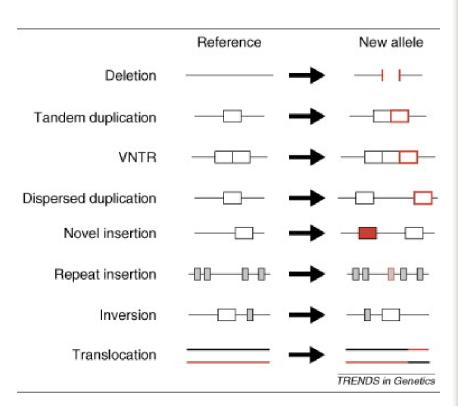
A field guide to whole-genome sequencing, assembly and annotation

Robert Ekblom and Jochen B. W. Wolf


17

Sequencing assembly strategies

- 1. Re-sequencing
- 2. De novo sequencing



Variants

- SNPs
- Indels (small Indels)
- Copy number variants
- Structural variants (large Indels/ inversion/ translocation etc.)
- Problematic region: repetitive region and PE/PEE genes,

Hurles et, Trends in Genetics, 2007

Alignment	Similarity-based arrangement of DNA, RNA or protein sequences. In this context, subject and query sequence should be orthologous and reflect evolutionary, not functional or structural relationships
Annotation	Computational process of attaching biologically relevant information to genome sequence data
Assembly	Computational reconstruction of a longer sequence from smaller sequence reads
Barcode	Short-sequence identifier for individual labelling (barcoding) of sequencing libraries
BAC	(Bacterial artificial chromosome) DNA construct of various length (150–350 kb)
cDNA	Complementary DNA synthesized from an mRNA template
Contig	A contiguous linear stretch of DNA or RNA consensus sequence. Constructed from a number of smaller, partially overlapping, sequence fragments (reads)
Coverage	Also known as 'sequencing depth'. Sequence coverage refers to the average number of reads per locus and differs from physical coverage, a term often used in genome assembly referring to the cumulative length of reads or read pairs expressed as a multiple of genome size

EST library	Expressed sequence tag library. A short
	subsequence of cDNA transcript sequence
Fosmid	A vector for bacterial cloning of genomic DNA
	fragments that usually holds inserts of around
	40 kb
GC content	The proportion of guanine and cytosine bases in a DNA/RNA sequence
Gene ontology	Structured, controlled vocabularies and
(GO)	classifications of gene function across species and research areas
InDel	Insertion/deletion polymorphism
Insert size	Length of randomly sheared fragments (from the genome or transcriptome) sequenced from both ends
K-mer	Short, unique element of DNA sequence of length k, used by many assembly algorithms
Library	Collection of DNA (or RNA) fragments modified in a way that is appropriate for downstream
	analyses, such as high-throughput sequencing in this case
Mapping	A term routinely used to describe alignment of short sequence reads to a longer reference
	sequence
Masking	Converting a DNA sequence [A,C,G,T] (usually

[a,c,g,t] (soft masking)

repetitive or of low quality) to the uninformative character state N or to lower case characters

Massively parallel (or next generation) sequencing	High-throughput sequencing nano-technology used to determine the base-pair sequence of DNA/RNA molecules at much larger quantities than previous end-termination (e.g. Sanger sequencing) based sequencing techniques
Mate-pair	Sequence information from two ends of a DNA fragment, usually several thousand base-pairs long
N50	A statistic of a set of contigs (or scaffolds). It is defined as the length for which the collection of all contigs of that length or longer contains at least half of the total of the lengths of the contigs
N90	Equivalent to the N50 statistic describing the length for which the collection of all contigs of that length or longer contains at least 90% of the total of the lengths of the contigs
Optical map	Genomewide, ordered, high-resolution restriction map derived from single, stained DNA molecules. It can be used to improve a genome assembly by matching it to the genomewide pattern of expected restriction sites, as inferred from the genome sequence

Paired-end	Sequence information from two ends of a short
sequencing	DNA fragment, usually a few hundred base pairs long
Read	Short base-pair sequence inferred from the
	DNA/RNA template by sequencing
RNA-Seq	High-throughput shotgun transcriptome (cDNA)
	sequencing. Usually not used synonymous to
	RNA-sequencing which implies direct sequencing
	of RNA molecules skipping the cDNA
	generation step
Scaffold	Two or more contigs joined together using
	read-pair information
Transcriptome	Set of all RNA molecules transcribed from a
	DNA template

3

High throughput sequencing platforms

Recommendation for data requirements for a selection of NGS applications

Application	# reads/sample	Run type	# read length (bp)	Remark
Transcriptome analysis				
Tag based (SAGE/CAGE)	>10 million	Single end	20-50	
SmallRNA	>10 million	Single end	20-50	
mRNA Seq	>30 million	Paired-end	>50	Efficient exclusion of rRNA derived sequences increases the resolution of the transcripts of interest
Ribosome profiling	>20 million	Single end	20-50	•
ChIP-Seq	>20 million	Single or Paired-end	≥50	Specificity of the ChIP enzyme determines the # reads needed. Low specificity ~ more background = more reads needed
De novo sequencing	30× genome coverage, preferably more.	long single-end reads and Paired-end	As long as possible	Ideal PacBio long reads. Or combination of paired-end, mate-pair and PacBio.
Meta-genomics Tag based (ITS, 16S)	>100,000	Paired-end, long single-end reads	As long as possible	Complexity of the specific biosphere determines both the primer pairs and/or #reads per sample. Longer reads allow for better differentiation between related
Shotgun	>100 million	Paired-end, long single reads	As long as possible	species Complexity of the specific biosphere determines the library insert size and/or #reads per sample.
Methylation analysis				
Whole genome	>400 million	Paired-end	≥100	Ideal situation: all PacBio long reads on native/ unmodified shotgun libraries.
Enrichment strategies	>50 million	Paired-end	≥100	3
Infections	>25 million	Single or Paired-end	≥100	~2% of cell-free DNA from plasma is of non-human origin
Non-invasive prenatal testing	>10–20 million	Single-end	>50	Trisomy detection from cell-free fetal DNA in materna plasma
Disease gene identification diagn	ostics			
Whole genome	1 billion	Paired-end	≥100	30× average coverage
Exome (50 Mb)	>60 million	Paired-end	≥100	50× average coverage, >75% on target

High-Throughput Sequencing Technologies

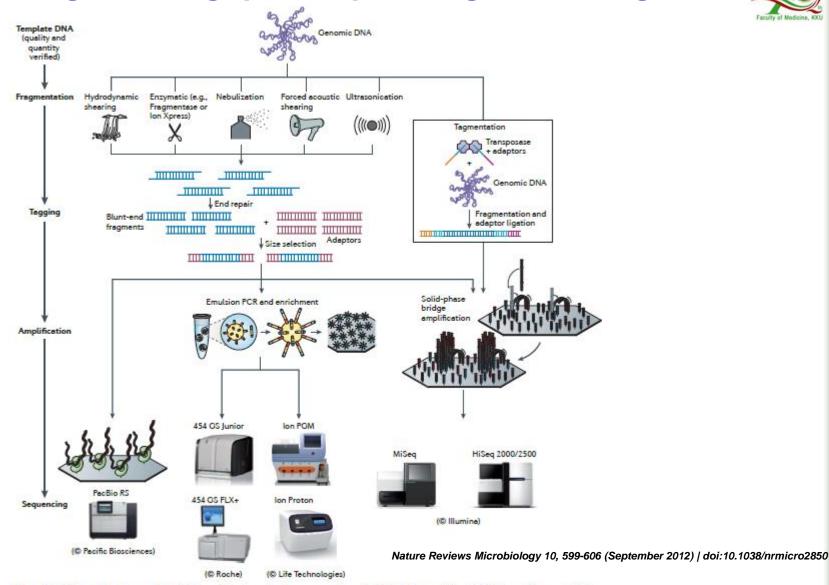


Figure 1 | High-throughput sequencing platforms. The schematic shows procedures. For full details, see main text. PGM, Personal Genome Machine. the main high-throughput sequencing platforms available to microbiologists today, and the associated sample preparation and template amplification

The tagmentation schematic is modified, with permission, from REF. 57 @ (2010) BioMed Central.

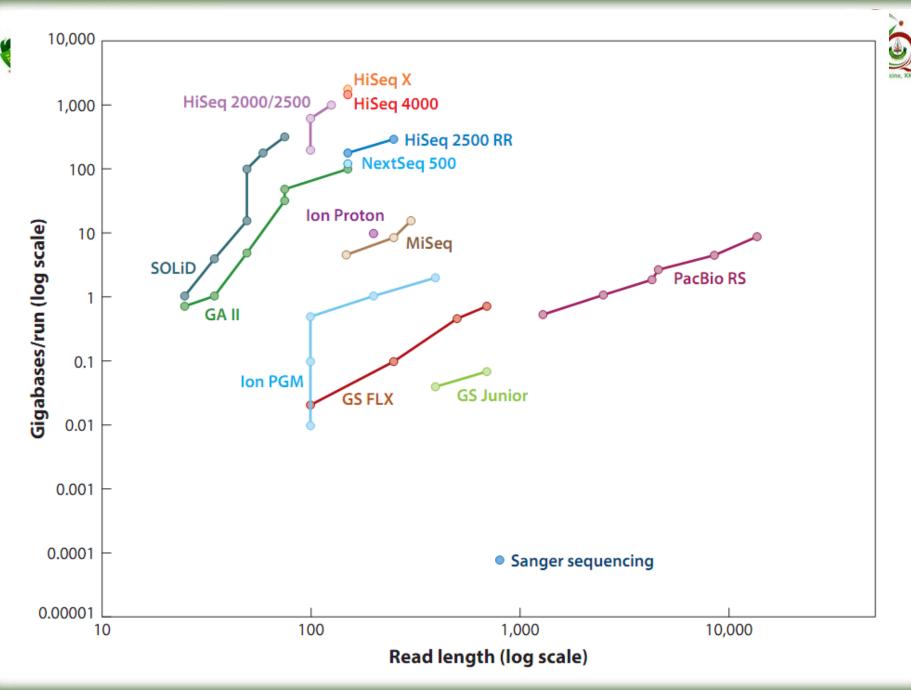

High throughput sequencing platforms

Table 1 Technology, platforms and features of the currently available sequencing methods

Sequencing technology	Platform	Mb/run ^a	Time/run	Read length (bp)	Limits	Applications	
Sanger di-deoxy nucleotide sequencing	Capillary sequencers, for example, Life Technologies ABI3730	0.44	7 hours	650-800	Cost, need for high DNA amounts, cloning step	De novo sequencing	
Pyrosequencing	Roche (454) GS-FLX	700	24 hours	700	Difficulty in disambiguating	De novo sequencing	
	Roche (454) GS Junior	35	4 hours	250	repeat regions, misincorporation of excess nucleotides		
Sequencing by synthesis	Illumina Genome Analyzer II	95×10^{3}	14 days	2 × 150	Limited paired-end and targeted sequencing	Resequencing	
	Illumina Hi Seq2500	6×10^5	11 days	2×100		Resequencing	
	Illumina MiSeq	15×10^3	56 hours	2 × 300		De novo sequencing, resequencing	
Ligation-based sequencing	Life Technologies SOLID 5500	32×10^3	15 days	50 + 35	Specific sequence format, difficult sequence assembly	Resequencing	
Semiconductor	Ion Torrent PGM	200	4 hours	200-400	Artificial insertions or deletions in	Resequencing	
sequencing	Ion Torrent Proton	2.5×10^{3}	4 hours	100-200	mononucleotide repeats	Resequencing	
SMRT technology	Pacific Biosciences PacBio RSII	$0.5-1 \times 10^3$	4 hours	10 ³ -10 ⁴	Substitution errors	De novo sequencing and genome structure	
lonic current sensing	Oxford Nanopore Technologies	NA	No fixed run-time	$10^4 - 5 \times 10^4$	NA	De novo sequencing	
	MinION						

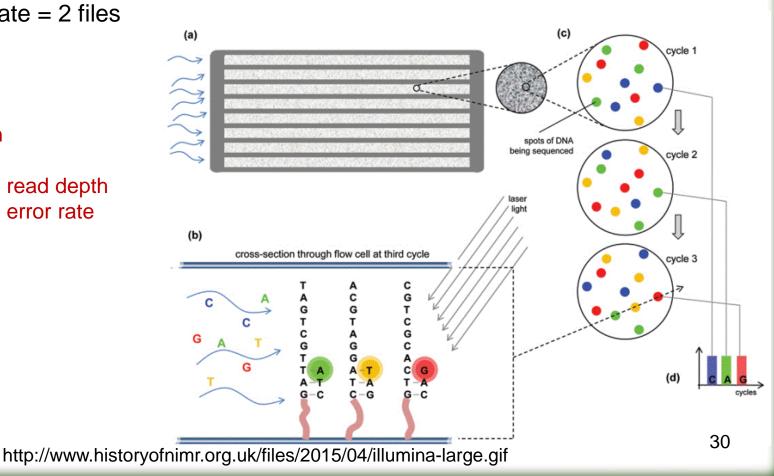
Fournier PE. Et al., Genome Med. 6 (11), 2014

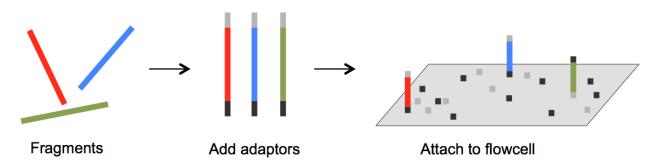
ACULTY OF MEDIC	Machine (manufacturer)	Chemistry	Modal read length* (bases)	Run time	Gb per run	Current, approximate cost (US\$)‡	Advantages	Disadvantages			
	High-end instruments										
	454 GS FLX+ (Roche)	Pyrosequencing	700–800	23 hours	0.7	500,000	 Long read lengths 	Appreciable hands-on time High reagent costs High error rate in homopolymers			
	HiSeq 2000/2500 (Illumina)	Reversible terminator	2×100	11 days (regular mode) or 2 days (rapid run mode) ⁵	600 (regular mode) or 120 (rapid run mode) ⁵	750,000	Cost-effectiveness Steadily improving read lengths Massive throughput Minimal hands-on time	Long run time Short read lengths HiSeq 2500 instrument upgrade not available at time of writing (available end 2012)			
	5500xl SOLiD (Life Technologies)	Ligation	75 + 35	8 days	150	350,000	Low error rate Massive throughput	 Very short read lengths Long run times 			
	PacBio RS (Pacific Biosciences)	Real-time sequencing	3,000 (maximum 15,000)	20 minutes	3 per day	750,000	Simple sample preparation Low reagent costs Very long read lengths	High error rate Expensive system Difficult installation			
	Bench-top instruments										
	454 GS Junior (Roche)	Pyrosequencing	500	8 hours	0.035	100,000	 Long read lengths 	Appreciable hands-on time High reagent costs High error rate in homopolymers			
	Ion Personal Genome Machine (Life Technologies)	Proton detection	100 or 200	3 hours	0.01-0.1 (314 chip), 0.1-0.5 (316 chip) or up to 1 (318 chip)	80,000 (including OneTouch and server)	 Short run times Appropriete throughput for microbial applications 	Appreciable hands-on time High error rate in homopolymers			
Nature Review	Ion Proton (Life Technologies)	Proton detection	Up to 200	2 hours	Up to 10 (Proton I chip) or up to 100 (Proton II chip)	145,000 +75,000 for compulsory server	 Short run times Flexible chip reegents 	 Instrument not evailable at time of writing 			
	MiSeq (Illumina) vs Microbiology 10, 59	Reversible terminator 09-606 (Septembe	2×150 er 2012) doi	27 hours	1.5 cro2850	125,000	Cost-effectiveness Short run times Appropriate throughput for microbial applications Minimal hands-on time	 Read lengths too short for efficient essembly 			

Applications of Sequencing Technologies

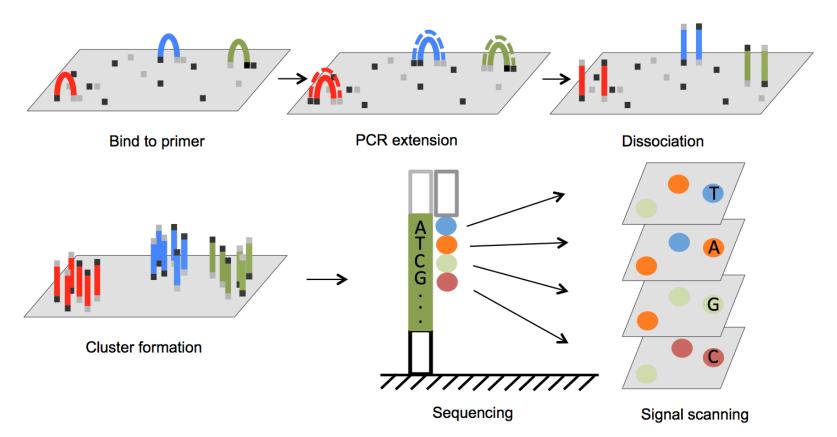
Example application in	Desirable characteristics	Machine*						
bacteriology		454 GS Junior [‡]	454 GS FLX+ [‡]	lon Personal Genome Machine (318 chip) [§]	MiSeq [∥]	HiSeq 2000	5500xl SOLiD ⁵	PacBio RS1
De novo sequencing of novel strains to generate a single-scaffold reference genome	 Long reads Paired-end protocol and/or long mate-pair protocol Even coverage of genome 	✓	//	✓	✓	✓	Х	//
Rapid characterization of a novel pathogen (draft <i>de novo</i> assembly of a genome for a single strain)	Total run time (library preparation plus sequencing) of under 48 hours Sufficient coverage of a bacterial genome in a single run	✓	V	√ √	V V	X	X	V V
Rough-draft <i>de novo</i> sequencing of small numbers of strains (<20) for comparative analysis of gene content	 Long or paired-end reads High throughput Ease of library and sequencing workflow Cost-effective 	X	✓	✓	//	//	✓	✓
Re-sequencing of many similar strains (>50) for the discovery of single nucleotide polymorphisms and for phylogenetics	Very high throughput Low-cost, high-throughput sequence library construction High accuracy	X	X	✓	✓	√ √	✓	✓
Small-scale transcriptomics- by-sequencing experiments (for example, two strains under four growth conditions with two biological replicates, so 16 strains)	High per-isolate coverage	Х	✓	1	✓	//	√ √	√ √
Phylogenetic profiling to genus-level using partial 16S rRNA gene amplicon sequencing	 High coverage Long amplicon input (≥500 bp) Long reads High single-read accuracy (error rate <1%) 	√	//	√	//	✓	/	X
Whole-genome metagenomics for the reconstruction of multiple genomes in a single sample	Long reads or paired-end reads Very high throughput Low error rate	X	✓	✓	✓	√ √	✓	✓

^{*√√,} particularly well suited; √, suitable; X, not suitable. From Roche. From Life Technologies. From Illumina. From Pacific Biosciences.




Illumina sequencing

- Illumina Hiseq 2500 sequencing
 - Paired-end reads (2 x 250 bp)
 - 1 isolate = 2 files

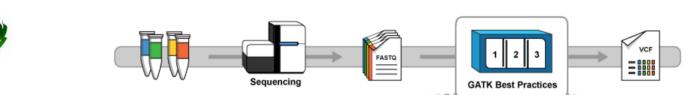

- Read length
- Paired-end
- Sequencing read depth
- Sequencing error rate
- Cost
- Others

http://www.intechopen.com/source/html/49419/media/image2.png

Animation of Illumina sequencing platform

https://www.youtube.com/watch?v=HMyCqWhwB8E

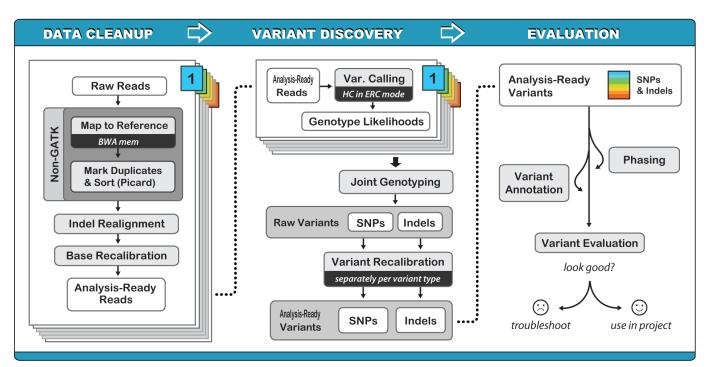
Analysis pipeline


Simple analysis pipeline

.fastq Steps		Purposes	Example tools			
	-QC -Trimming -Mapping	(sequencing read checking) (to remove unwanted region of read) (Map the raw reads to ref. e.g. H37Rv)	FastQC Trimmomatics BWA MEM			
	-Sam > Bam -Sorting BAM file -Indexing -Realignment	(BAM is smaller) (co-ordinate sort to genome) (data structuring for strings) (decrease mapping error)	Samtools Samtools Samtools GATK			
	-Stat report	(see info of mapping & parameters)	Samtools/ GATK			
	-Variant calling-Variant filtering-Varian annotation	(call the variant) (filter low quality variants) (to annotate the variant to the ref.)	Samtools Samtools snpEff			
results	Sideline analysis -Phylogenetic analy -Variant comparison -Others		MEGA <i>Manual</i>			

Not include Denovo assembly

1. PRE-PROCESSING

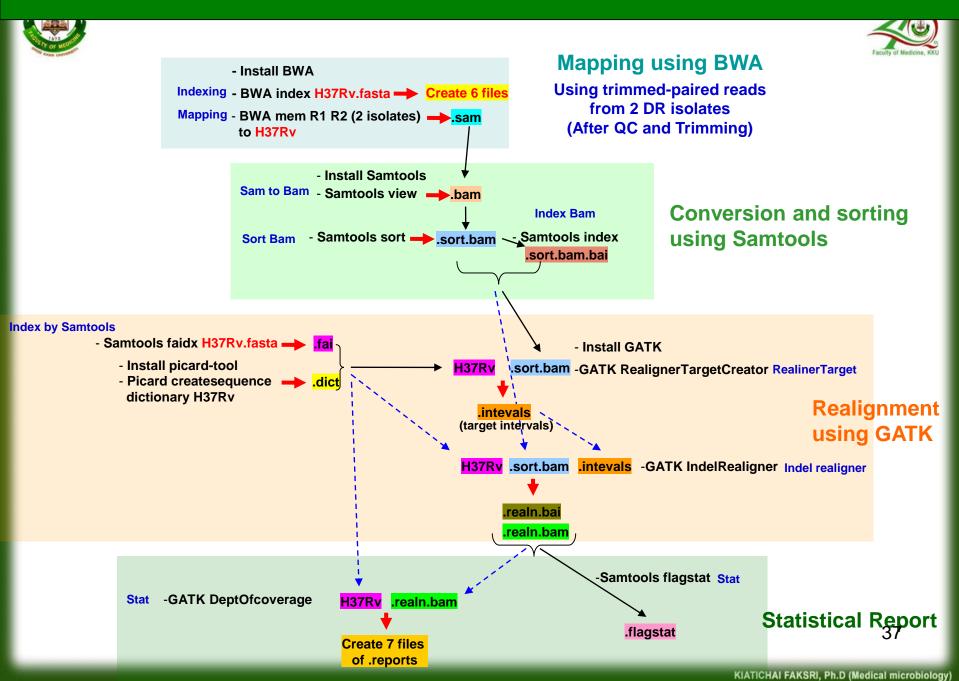

Pre-processing starts from raw sequence data, either in FASTQ or uBAM format, and produces analysis-ready BAM files. Processing steps include alignment to a reference genome as well as some data cleanup operations to correct for technical biases and make the data suitable for analysis.

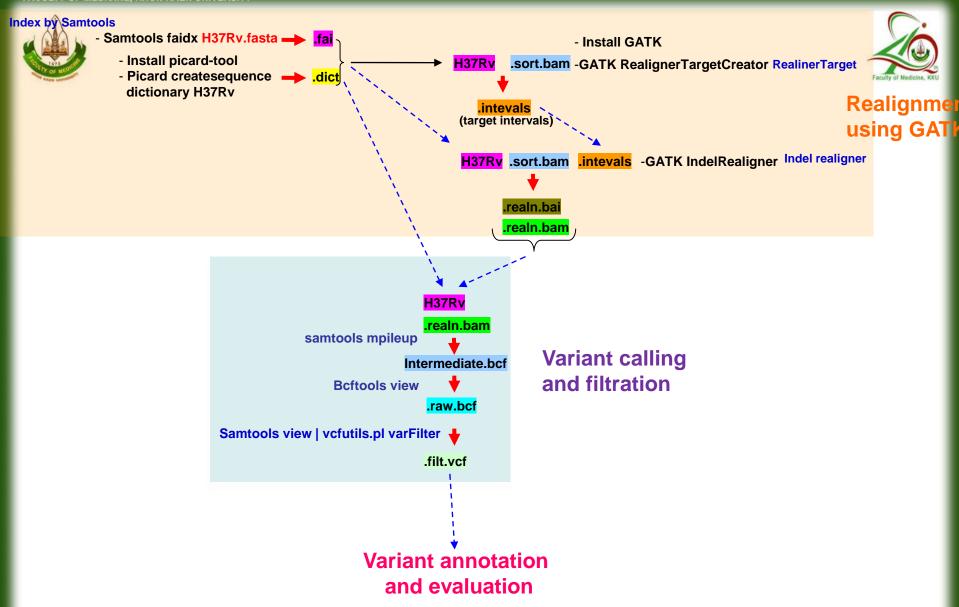
2. VARIANT DISCOVERY

Variant Discovery starts from analysis-ready BAM files and produces a callset in VCF format. Processing involves identifying sites where one or more individuals display possible genomic variation, and applying filtering methods appropriate to the experimental design.

3. CALLSET REFINEMENT


Callset Refinement starts and ends with a VCF callset. Processing involves using meta-data to assess and improve genotyping accuracy, attach additional information and evaluate the overall quality of the callset.


Workflow of a typical whole-genome sequencing analysis

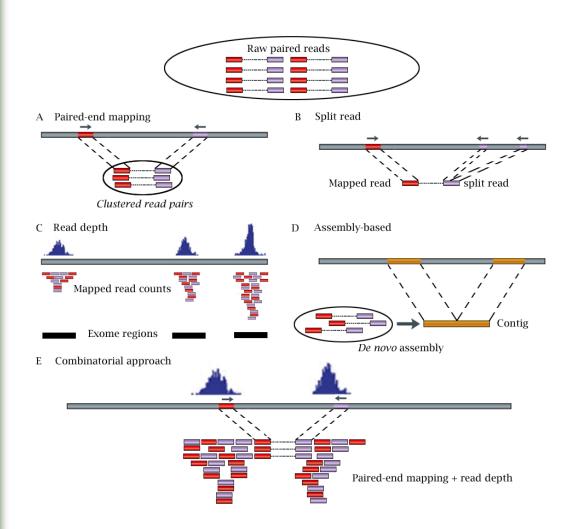


Robert Ekblom and Jochen B. W. Wolf,
Evolutionary Applications 2014

Analysis pipeline of NGS Illumina data (.fastq)

Can do multiple files too, what is the different? Should do separate or combined isolates

Technical information


Consideration

 The tools that used in the analysis pipeline for WGS analysis of bacteria were mostly adopted from human genome project.

SV classes	AEN UNIVERSITY Read pair	Read depth	Split read	Assembly
Deletion		322 322		Contig/ scaffold ————————————————————————————————————
Novel sequence insertion		Not applicable		Contig/ scaffold Assemble
Mobile- element insertion	Annotated transposon MEI	Not applicable	Annotated transposon MEI	Contig/ scaffold Repbase Assemble
Inversion	RP1 RP2	Not applicable	Inversion	Contig/ Inversion scaffold Assemble
Interspersed duplication				Assemble Contig/scaffold
Tandem duplication				Assemble Contig/ scaffold

Heterozygous SNP

- The coverage that support both Ref vs variant allele
- Whether or not it should be excluded, depend on biology
- Inside the vcf file can see the number

Position	Ref	Α	С	G	т	N	Total
1							
2 3							
235	Α	23	26				49

Source of false variant

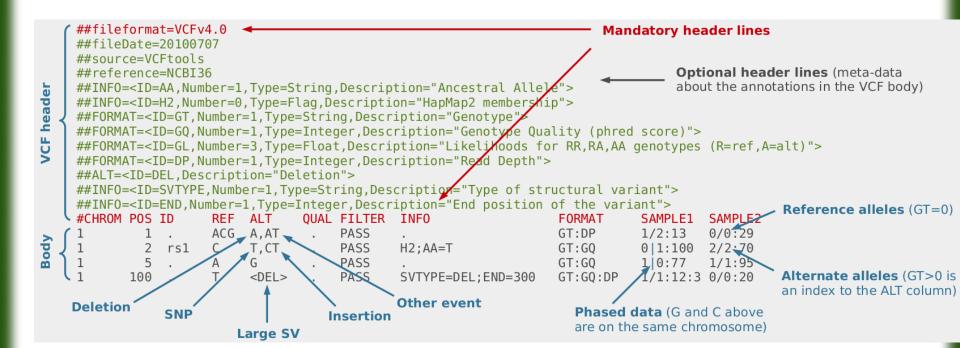
- Sequencing error: missing data at particular region
- Mapping error
- Calling error: genotyping error (e.g. heterozygous)
- Software: parameters
- Monomorphic SNP: unique to specific population
- Reference: the reference error

Fastq file format

- Each entry in a FASTQ file consists of four lines:
 - Sequence identifier
 - Sequence
 - Quality score identifier line (consisting of a +)
 - Quality score

NOTES:

- 1. If there are 1,000 raw sequence reads then there will be 4x1,000 = 4,000 lines in the FASTQ file.
- There should be the same number of sequences/lines in the corresponding FASTQ files if the sequencing run is paired-end.


+

AB?A?FFBBDB??EEEGACGCCEE?FDCE?E35GGHGEFBGHA1A1EGEFGHGGGG1EGGGE@E>E</FEEGG@CCAF?//

Data processing

Linux based software (open source)
 (lacking of basic can make you headache)

Data Analysis

R programming

New analyzer should aware

- Practice for Linux and how to use Terminal
- Symbolic and option of the bash language
- Typing: beware a case sensitive letter
- Beware extra "space", "tab", "enter" that cause error to the command line

Practice in NGS analysis I

Need to prepare

- 1. Copy all files (28 Gb) to your computer
- 2. Install VirtualBox
- 3. Try to lunch the VM and setting share folder
- 4. Send me the e-mail (kiatichai@kku.ac.th) "asking for the code"

VirtualBox

To run the command line tools, we use Unix based OS

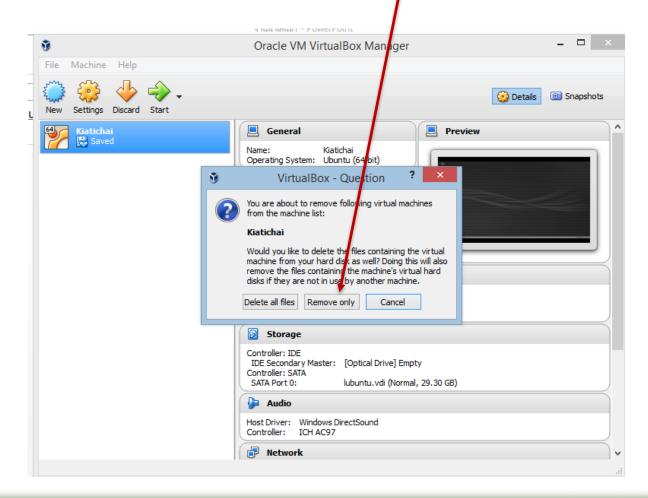
- Linux
- Mac OSX

Window!?!?

64 bit OS system

- We will use virtual machine (VirtualBox) based on linux OS
- All necessary software are preinstalled (normally you install by yourself)
- There are codes that can be copy and paste (normally you type yourself and there are options to consider)

Install Oracle VM VirtualBox >> Create VM by go to NEW >> Select Ubantu 64 bit >> Set System (CPU and Ram) >> Set Share folder

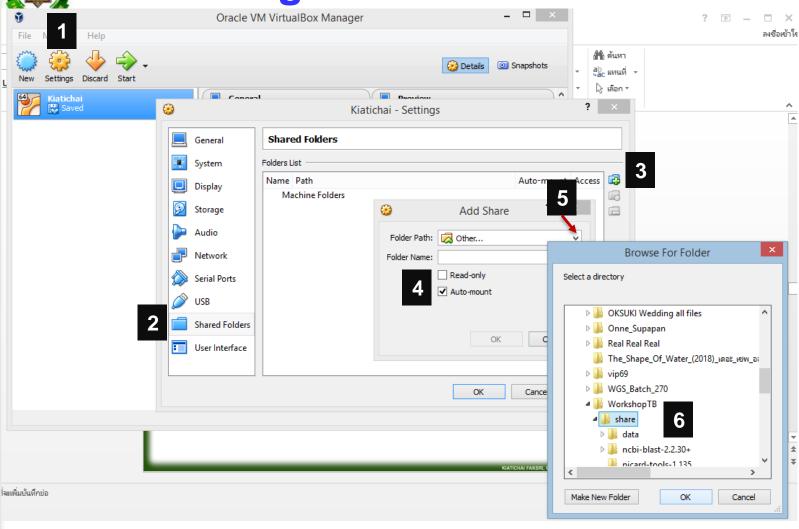

Note There is a way to do "share folder" between host (Window) and VM (Ubantu), (you do it later)

Be careful!!!

When you want to delete the old set up DO NOT select "delete all file" As all file will be gone.

Just choose remove only

Making share folder for VM


Share folder: please follow the step by step guide from http://www.htpcbeginner.com/setup-virtualbox-shared-folders-linux-windows/

- Select both automount and permanent
- Select
- Select the Folder location>>>> /media/sf_Share

Making share folder for VM

Select Setting >> 2. Select "Share Folder" >>> 3. Add new share folder >>

- 4. Tick "Auto-mount" >> 5. Click drop down list of "Folder path" >>
- 6. Select the "share" folder inside the "Workshop TB" where you copied your file >> Then click OK

Location of necessary file

- /usr/bin/ = for all miscellaneous software, e.g. samtools, bwa
- /usr/local/bin = for fastqc, trimmomatics, GenomAnalysisTK.jar, vcfutils.pl
- /home/user/program = TBprofiler, SpoTyping, snfEFF, piecard

Tested strains

- There are 2 Mtb strains,
- Illumina Miseq, paired, 250 bp read length, 50X read depth
- 1.) TB1_259: (TB1_259_R1.fastq/ TB1_259_R2.fastq)
- 2.) TB2_260: (TB2_260 _R1.fastq/ TB2_260 _R2.fastq)

Basic for using Terminal (Bash)

- File location and patch
- List the file = "ls", "ls -alh"
- Go to particular directory by "cd"
- See the file by "Is"
- Hidden file = ./
- Refresh the terminal screen = Ctrl + I
- Others, you will know it when you do it, might stuck! but you can google it

Simple analysis pipeline

Steps	Purposes	Example tools
-QC -Trimming -Mapping	(sequencing read checking) (to remove unwanted region of read) (Map the raw reads to ref. e.g. H37Rv)	FastQC Trimmomatics BWA MEM
-Sam > Bam -Sorting BAM file -Indexing -Realignment	(BAM is smaller) (co-ordinate sort to genome) (data structuring for strings) (decrease mapping error)	Samtools Samtools Samtools GATK
-Stat report	(see info of mapping & parameters)	Samtools/ GATK
-Variant calling-Variant filtering-Varian annotation	(call the variant) (filter low quality variants) (to annotate the variant to the ref.)	Samtools Samtools snpEff
Sideline analysis -Phylogenetic analysis -Variant comparisons -Others Not include structural variants (SVs)		MEGA <i>Manual</i>
	-QC -Trimming -Mapping -Sam > Bam -Sorting BAM file -Indexing -Realignment -Stat report -Variant calling -Variant filtering -Varian annotation Sideline analysis -Phylogenetic analy -Variant comparison	-QC (sequencing read checking) -Trimming (to remove unwanted region of read) -Mapping (Map the raw reads to ref. e.g. H37Rv) -Sam > Bam (BAM is smaller) -Sorting BAM file (co-ordinate sort to genome) -Indexing (data structuring for strings) -Realignment (decrease mapping error) -Stat report (see info of mapping & parameters) -Variant calling (call the variant) -Variant filtering (filter low quality variants) -Varian annotation (to annotate the variant to the ref.) Sideline analysis -Phylogenetic analysis -Variant comparisons

Not include Denovo assembly

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

To see option

\$ fastqc -h

To run

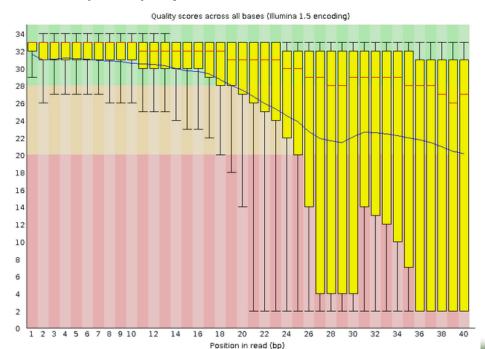
\$ fastqc ~/data/fastq/TB*.fastq -o ~/result/fastqc_result/

There are 2 file ".html" + ".zip" for each fastq (8 files in total)
See the result of each read (R1 and R2) of both strains in ".html file"
Is that OK?

Note: You can compare the fastqc result before vs after trimming (do it later yourself)

Quality Control: Bad Illumina Data

№FastQC Report


Summary

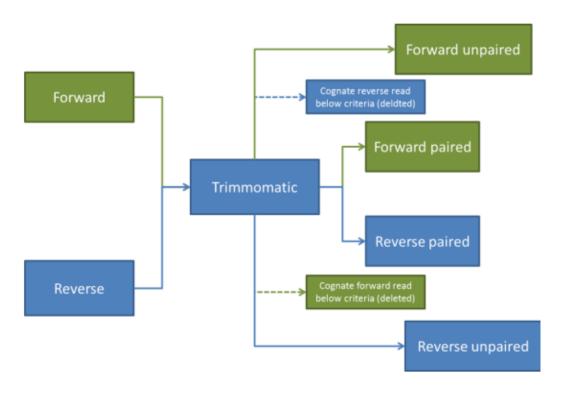
- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Mmer Content

Basic Statistics

Measure	Value		
Filename	bad_sequence.txt		
File type	Conventional base calls		
Encoding	Illumina 1.5		
Total Sequences	395288		
Sequences flagged as poor quality	0		
Sequence length	40		
%GC	47		

Per base sequence quality

2 Trimming: Trimmomatic


http://www.usadellab.org/cms/index.php?page=trimmomatic

- LEADING:3 = cut the base at the start of read when the score below 3
- TRAILING:3 = cut the base at the end of read when the score below 3
- SLIDINGWINDOW:4:15 = cut sliding window of 4 bps when the average score below 15
- MINLEN:75 = Exclude read below 75 bp
- TOPHRED33/64: for changing the offset of the quality score to the preferred format
- HEADCROP: cut specific length of start of read
- CROP: 230 cut the read to specific length
- ILLUMINACLIP: exclude the adaptor

Stringency is matter for the quality (but some data will be lost)

Flow of reads in Trimmomatic Paired End mode

To run (for TB1_259 strain)

\$ java -jar /usr/local/bin/trimmomatic-0.35.jar PE -phred33
 ~/data/fastq/TB1_259_R1.fastq ~/data/fastq/TB1_259_R2.fastq
 ~/result/trimming_result/TB1_259_pair_R1.fastq ~/result/trimming_result/TB1_259_unpair_R1.fastq
 ~/result/trimming_result/TB1_259_pair_R2.fastq ~/result/trimming_result/TB1_259_unpair_R2.fastq
 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:75

See the result = 4 files for 1 strain: 2 paired + 2 unpaired reads

Do for the 2nd strain: TB2_260 strain

```
$ java -jar /usr/local/bin/trimmomatic-0.35.jar PE -phred33
    ~/data/fastq/TB2_260_R1.fastq ~/data/fastq/TB2_260_R2.fastq
    ~/result/trimming_result/TB2_260_pair_R1.fastq ~/result/trimming_result/TB2_260_unpair_R1.fastq
    ~/result/trimming_result/TB2_260_pair_R2.fastq ~/result/trimming_result/TB2_260_unpair_R2.fastq
    LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:75
```

See the result = 8 files of the 2 strains You can see that >90% (see output message) of the paired reads are survived So, you can select only paired reads for the downstream analysis

Note: You can do batch (many strain on one run), you can find the option to do it later

Commonly Used "short-read" DNA Mappers

- BWA
 - http://bio-bwa.sourceforge.net/
- Bowtie2
 - http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
- MAQ
 - http://maq.sourceforge.net/
- SMALT
 - https://www.sanger.ac.uk/resources/software/smalt/
- NovoAlign
 - http://www.novocraft.com/main/page.php?s=novoalign

http://bio-bwa.sourceforge.net/

3.1 Indexing the reference strain (for later mapping with tested stains)

Skipped

\$ bwa index ~/ref/refBWA/h37rv_sequence.fasta

5 additional files will be added

However, h37Rv reference was indexed (No need to do this)

Note: Bowtie2 is another popular software for mapping but – BWA: (BWT) is fast, detect small indels and good sensitivity

3.2 mapping the trimmed read to the indexed H37Rv reference)

```
$ bwa mem ~/ref/refBWA/h37rv_sequence.fasta
~/result/trimming_result/TB1_259_pair_R1.fastq
~/result/trimming_result/TB1_259_pair_R2.fastq
> ~/result/mapping_result/TB1_259.sam
-R '@RG\tID:TB1_259\tSM:Mtb\tSW:bwa'
```

-R: option to add the read group name

Wait for a while, it take time for mapping

You will get TB1_259.sam in your result folder

Do again for TB2_260 strain

```
$ bwa mem ~/ref/refBWA/h37rv_sequence.fasta
~/result/trimming_result/TB2_260_pair_R1.fastq
~/result/trimming_result/TB2_260_pair_R2.fastq
> ~/result/mapping_result/TB2_260.sam
-R '@RG\tID:TB2_260\tSM:Mtb\tSW:bwa'
```

Now you get 2 SAM file for 2 strains

Practice in NGS analysis II

4

Re-organization of mapped reads

4.1 SAM to BAM conversion (to save space)

```
$ samtools view -bS ~/result/mapping_result/TB1_259.sam
-o ~/result/mapping_result/TB1_259.bam
```

- Convert into the compressed files (binary format)
- Compressed around 600 Mb (for Mtb) into 180 Mb, per isolate
- For downstream analysis, you can delete SAM and keep BAM (to save space)

Do again for TB2_260 strain

\$ samtools view -bS ~/result/mapping_result/TB2_260.sam -o ~/result/mapping_result/TB2_260.bam

4.2 Sorting the BAM files

\$ samtools sort ~/result/mapping_result/TB1_259.bam ~/result/mapping_result/TB1_259.sort

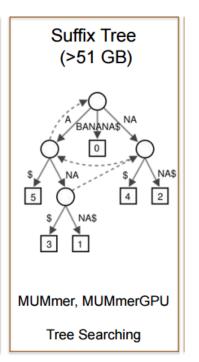
- The output will be ".sort.bam"

Do again for TB2_260 strain

\$ samtools sort ~/result/mapping_result/TB2_260.bam ~/result/mapping_result/TB2_260.sort

Indexing = preprocessing data for faster access e.g. suffix array/tree Sorting = sort according to the genomic position
Mapping = map to the reference
Mapping software = BWA (MEM), BOWTIE2
Variant calling = GATK, Samtools

Brute Force
(3 GB)


BANANA
BAN
ANA
NAN
ANA

Nave
Slow & Easy

Suffix Array
(>15 GB)

6 \$
5 A\$
3 ANA\$
1 ANANA\$
0 BANANA\$
4 NA\$
2 NANA\$

Vmatch, PacBio Aligner
Binary Search

4.3 Indexing the sorted BAM file

\$ samtools index ~/result/mapping_result/TB1_259.sort.bam

- The output will be ".sort.bam.bai"

Do again for TB2_260 strain

\$ samtools index ~/result/mapping_result/TB2_260.sort.bam

Realignment

5.1 Indexing the reference strain using samtool is required for GATK Realigner (pre-indexed, so skip this step)

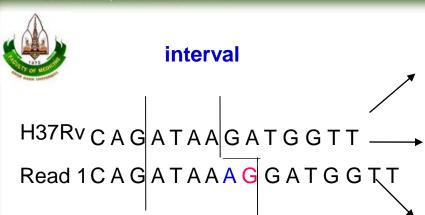
Skipped

additional files will be added

However, h37Rv reference was indexed by samtools (No need to do this)

h37rv_sequence.fai

samtools faidx ~/ref/refSamtool/h37rv_sequence.fasta


h37rv_sequence.dict

picard CreateSequenceDictionary R= ~/ref/refSamtool/h37rv_sequence.fasta O= h37rv_sequence.fasta.dict

Meaning; A sequence dictionary contains the sequence name, sequence length, genome assembly identifier, and other information about sequences.

Local Realignment around Indels

• The algorithms that are used in the initial mapping step tend to produce various types of artifacts. For example, reads that align on the edges of indels often get mapped with mismatching bases that might look like evidence for SNPs, but are actually mapping artifacts. The realignment process identifies the most consistent placement of the reads relative to the indel in order to clean up these artifacts. It occurs in two steps: first the program identifies intervals that need to be realigned, then in the second step it determines the optimal consensus sequence and performs the actual realignment of reads.

AGATA-A-GATGG AGATAAAGGATGG

AGAT-AA-GATGG AGATAAAGGATGG

AGATAA - - GATGG AGATAA AGGATGG

H37Rv AGATAA - - GATGG
Read 1 AGATAAAGGATGG
Read 2 GATAA - GGATGGTT

AGATAA - GGATGGT A = sequencing error

Read 4 CAGATAA - GGAT

H37Rv AGATAA-GATGG AGATAAGGATGG

Consensus calling: from the reads (multiple sequence realignment) according to coverage of that particular interval

Read 3

G = insertion

5.2 Create Realigner Target (RealignerTargetCreator)

- \$ java -Xmx4g -jar ~/program/GenomeAnalysisTK.jar
- -T RealignerTargetCreator -R ~/ref/refSamtool/h37rv_sequence.fasta
- -I ~/result/mapping_result/TB1_259.sort.bam
- -o ~/result/mapping_result/TB1_259.sort.bam.intervals
- The output will be "bam.intervals"

Do again for TB2_260 strain

- \$ java -Xmx4g -jar ~/program/GenomeAnalysisTK.jar
- -T RealignerTargetCreator -R ~/ref/refSamtool/h37rv_sequence.fasta
- -I ~/result/mapping_result/TB2_260.sort.bam
- -o ~/result/mapping_result/TB2_260.sort.bam.intervals

5.3 to do realignment (IndelRealigner)

- \$ java -Xmx4g -jar ~/program/GenomeAnalysisTK.jar -T IndelRealigner
- -R ~/ref/refSamtool/h37rv_sequence.fasta
- -I ~/result/mapping_result/TB1_259.sort.bam
- -targetIntervals ~/result/mapping_result/TB1_259.sort.bam.intervals
- -o ~/result/mapping_result/TB1_259.realn.bam
- The 2 output files will be ".realn.bam" + ".realn.bai"

Do again for TB2_260 strain

- \$ java -Xmx4g -jar ~/program/GenomeAnalysisTK.jar -T IndelRealigner
- -R ~/ref/refSamtool/h37rv_sequence.fasta
- -I ~/result/mapping_result/TB2_260.sort.bam
- -targetIntervals ~/result/mapping_result/TB2_260.sort.bam.intervals
- -o ~/result/mapping_result/TB2_260.realn.bam

6 Stat report

This step is just provide you the QC information of mapping, the output is not necessary for the downstream analysis

6.1 Coverage report by GATK

\$ java -Xmx4g -jar ~/program/GenomeAnalysisTK.jar

- -T DepthOfCoverage -R ~/ref/refSamtool/h37rv_sequence.fasta
- -l ~/result/mapping_result/TB1_259.realn.bam
- -o ~/result/stat result/TB1 259.realn.bam.report
- -This step might take time, e.g. > 5 min (if it take too long, you can do it back home)
- -There are 7 report files, the ".bam.report" tell coverage or read depth of each position

Do again for TB2_260 strain

\$ java -Xmx4g -jar ~/program/GenomeAnalysisTK.jar

- -T DepthOfCoverage -R ~/ref/refSamtool/h37rv_sequence.fasta
- -l ~/result/mapping_result/TB2_260.realn.bam
- -o ~/result/stat_result/TB2_260.realn.bam.report

6.2 Flagstat report by SAMtools

\$ samtools flagstat ~/result/mapping_result/TB1_259.realn.bam

> ~/result/stat_result/TB1_259.realn.bam.flagstat

-There is 1 output file: tell the % of mapped reads and mapped paired-reads

Do again for TB2_260 strain

\$ samtools flagstat ~/result/mapping_result/TB2_260.realn.bam

> ~/result/stat_result/TB2_260.realn.bam.flagstat

7

Faculty of Medicine, KXU

Variant calling using SAMtools

7.1 variant calling using SAMtools

- You can use other tool (such as GATK) to call the variant
- The intersect set of variants between SAMtools and GATK might be used.
- For this practice, we will use only SAMtools for variant calling

```
$ samtools mpileup -B -Q 20 -d 2000 -C 50 -ugf
```

- ~/ref/refSamtool/h37rv_sequence.fasta
- ~/result/mapping_result/TB1_259.realn.bam | bcftools view -bvcg >
- ~/result/calling_result/TB1_259.raw.bcf
- You can see the meaning of the option by "samtools mpileup", and then enter
- You can also see option of "bcftools view"
- The output = ".raw.bcf" file contain un-filtered variants in BCF (binary) format

Do again for TB2_260 strain

This step also take time!

- \$ samtools mpileup -B -Q 20 -d 2000 -C 50 -ugf
- ~/ref/refSamtool/h37rv_sequence.fasta
- ~/result/mapping_result/TB2_260.realn.bam | bcftools view -bvcg >
- ~/result/calling_result/TB2_260.raw.bcf

7.2 BCF to VCF conversion

This step is just simply converse BCF to VCF file format So, the output = un-filter variants in the VCF format

\$ bcftools view ~/result/calling_result/TB1_259.raw.bcf >
~/result/calling_result/TB1_259.raw.vcf

Do again for TB2_260 strain

\$ bcftools view ~/result/calling_result/TB2_260.raw.bcf >
~/result/calling_result/TB2_260.raw.vcf

7.3 Variant filtration

Then, we want to filter some low quality variants Notably, the sensitivity to detect the variants might decrease, depending on the stringency

\$ vcfutils.pl varFilter -d 10 -D 2000 -Q 20 ~/result/calling_result/TB1_259.raw.vcf >
~/result/calling_result/TB1_259.filt.vcf

- You can see the meaning of the option by "vcfutils.pl varFilter", and then enter
- Here, we exclude the variants with <20 mapping quality and <10 read depth

Do again for TB2_260 strain

\$ vcfutils.pl varFilter -d 10 -D 2000 -Q 20 ~/result/calling_result/TB2_260.raw.vcf > ~/result/calling_result/TB2_260.filt.vcf

8

Variant annotation using snpEff

- Too much detail of variant annotation using snpEFF can be covered in this practice, recommend to read the manual yourself
- The objective of this practice is get the concept to use the software
- snfEff required database (H37rv ref.), need to prepare this before running the program, please refer to the manual (the step is skipped, as it preinstalled in VM)

Not all SNPs you want to know the annotation, so you can selectively see the annotation of SNP of interest, e.g. after SNPs comparisons between strains

8.1 change the heading of the vcf file to compatible with the databases

- This step is the trouble shooting step. If you do not change the header of the vcf file, when you run the snpEff in step 2.8.2, the error message will pop up.
- If you face the trouble, You can find the suggestion in the discussion forum, google it!
- You can change the header manually but it is not practical.

Here we will use a short script to edit the header.

go to the location of your vcf file

\$ cd ~/result/calling_result/

change the header of the vcf file

 $sin *.vcf \mid while read line; do sed 's/gi|448814763|ref|NC_000962.3|/NC_000962/' sline > rewrite.$line; done$

The output of the 2 strains = "rewrite...... filt.vcf"

8.2 running the annotation using snfEFF

```
$ for A in ~/result/calling_result/rewrite*.vcf;
do
B=${A%.vcf}.ann.vcf;
C=${A%.vcf}.ann.html;
java -jar ~/program/snpEff/snpEff.jar m_tuberculosis_H37Rv $A > $B -s $C;
done
```

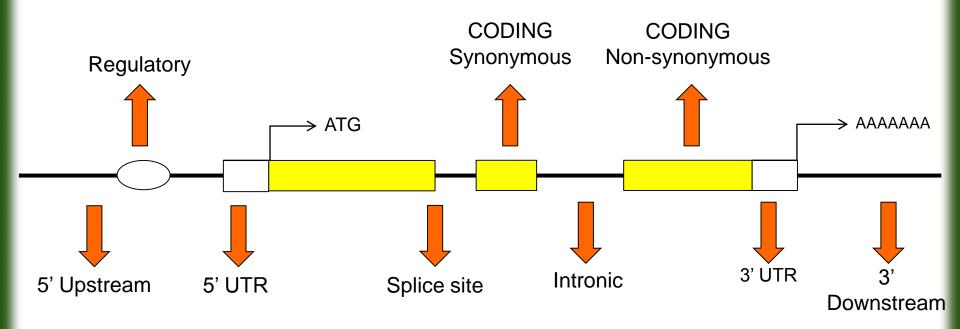
- There are 3 outputs = ".filt.ann.vcf" + ".html" + ".genes.txt"
- You can see the content inside the each of output files
- you can see the additional information from the annotated file (compare to the un-annotated filt.vcf one)
- Again, too much detail can be covered for the annotation output, please read the manual of snpEFF yourself.

^{*} This is the example of "loop command" to run multiple strains in one command

Example output from SnpEff

Number of effects by type and region

Туре					
Type (alphabetical order)	Count	Percent			
disruptive_inframe_deletion	13	0.076%			
disruptive_inframe_insertion	7	0.041%			
downstream_gene_variant	7,581	44.414%			
frameshift_variant	65	0.381%			
inframe_deletion	5	0.029%			
inframe_insertion	5	0.029%			
intergenic_region	324	1.898%			
intragenic_variant	1	0.006%			
missense_variant	787	4.611%			
splice_region_variant+stop_retained_variant	1	0.006%			
stop_gained	9	0.053%			
stop_lost+splice_region_variant	5	0.029%			
synonymous_variant	512	3%			
upstream_gene_variant	7,754	45.427%			


Type (alphabetical order)	Count	Percent
DOWNSTREAM	7,581	44.414%
EXON	1,408	8.249%
INTERGENIC	324	1.898%
NONE	1	0.006%
SPLICE_SITE_REGION	1	0.006%
UPSTREAM	7,754	45.427%

Region

Variation annotation: functional consequences

Sideline analysis (variant comparison)

#9.1 Union of the 2 strains

- \$ java -Xmx2g -jar ~/program/GenomeAnalysisTK.jar -T CombineVariants
- --genotypemergeoption UNIQUIFY -R ~/ref/refSamtool/h37rv_sequence.fasta
- -V:TB1 ~/result/calling_result/TB1_259.filt.vcf
- -V:TB2 ~/result/calling_result/TB2_260.filt.vcf
- -o ~/result/sideline result/unionTB1 TB2.filt.vcf

There are 2 output files = .vcf + .idx

You can see the union set of variants between the 2 strains from ".vcf" file

#9.2 Intersect of the 2 strains

\$ java -Xmx2g -jar ~/program/GenomeAnalysisTK.jar -T SelectVariants -R

- ~/ref/refSamtool/h37rv_sequence.fasta -V:IntersectTB1_TB2
- ~/result/sideline_result/unionTB1_TB2.filt.vcf -select 'set == "Intersection";' -o
- ~/result/sideline_result/intersectTB1_TB2.filt.vcf

You can see the intersection set of variants between the 2 strains from ".vcf" file

#9.3 Unique for TB1_259 strain

\$ java -Xmx2g -jar ~/program/GenomeAnalysisTK.jar -T SelectVariants -R ~/ref/refSamtool/h37rv_sequence.fasta -V:uniqueTB1

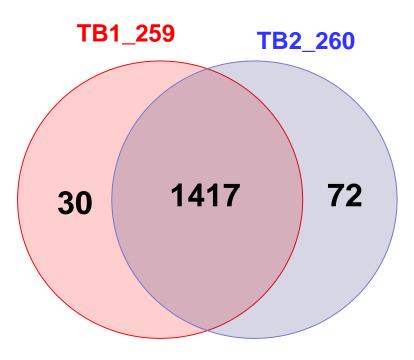
~/result/sideline_result/unionTB1_TB2.filt.vcf -select 'set == "TB1";' -o

~/result/sideline_result/uniqueTB1.filt.vcf

#9.4 Unique for TB2_260 strain

\$ java -Xmx2g -jar ~/program/GenomeAnalysisTK.jar -T SelectVariants
-R ~/ref/refSamtool/h37rv_sequence.fasta -V:uniqueTB2
~/result/sideline_result/unionTB1_TB2.filt.vcf -select 'set == "TB2";' -o
~/result/sideline_result/uniqueTB2.filt.vcf

To count the number of variant (line) you can use the command below

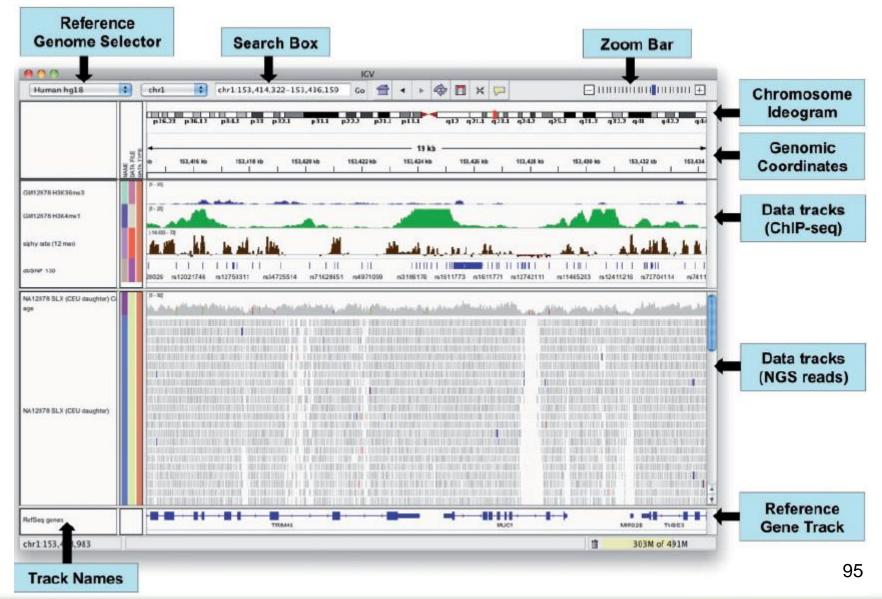

\$ grep -vc '^\$' ~/result/calling_result/rewrite.TB1_259.filt.vcf

This is count all lines, so excluding the header line = number of variant lines

Venn diagram comparing the number of variants between the 2 strains

- Number of variant include both SNPs and Indel
- The number of variant can be further filtered, e.g. excluding of
 - SNPs with < 20% of read depth to support
 - heterozygous SNPs with allelic frequencies <75 %

Faculty of Medicine, KKU


Visualization

- Integrative Genomics Viewer (IGV)
 - http://www.broadinstitute.org/igv/
- Artemis/ACT
 - http://www.sanger.ac.uk/resources/software/artemistview (samtools)
- BAMView
 - http://bamview.sourceforge.net/
- Tablet
 - http://bioinf.scri.ac.uk/tablet/

Visualization - IGV

8

Assignment

Assignments

4 genome of *M. tuberculosis:* 6 pairs

- 1. Mtb 1 versus Mtb 2
- 2. Mtb 1 versus Mtb 3
- 3. Mtb 1 versus Mtb 4
- 4. Mtb 2 versus Mtb 3
- 5. Mtb 2 versus Mtb 4
- 6. Mtb 3 versus Mtb 4

Each pair match to the successive number of student ID from the registration Copy from your friend will be punished by 50% subtraction of the actual score.

Please copy only 4 files (~300 MB) corresponding to your assignment

From each comparative analysis of 2 strains you received

- Submit the code for each step
- Submit the Venn diagram describing the number of SNP from the comparative analysis and Stat of each genome such as to total read count, read depth, mapped read etc.
- OPTION: Submit the function of the unique SNPs from each strain

one code txt file (file name = Mtb1 vs Mtb 2_your Name, e.g. 1vs2_code_Orawee Kaewprasert) one MS Word for Venn diagram (file name, similar = 1vs2_Venn_Orawee Kaewprasert)

Option for description of function of unique SNP (annotated SNPs)

Within 2 weeks after the lectures

1vs2 Venn Orawee Kaewprasert

1vs2_code_Orawee Kaewprasert

N	1tb 1	Mtb	2
100	30	0 8	30

Stats	Mtb1	Mtb2
Total read count of raw fastq file		
%Mapped reads		
Read depth		
Etc.		

Code file

Thank you for your attention