## * Evolution and

คณะแพกยศาสสธ์ บข.

## Baylggenetic analysis

## Eukaryotes



Kiatichai Faksri
Ph.D, Medical Microbiology Faculty of Medicine, KKU

## Objectives

- 1. Evolution and introduction to phylogenetic analysis
- 2. Methods in phylogenetic analysis


## Phylogenetic tree

- Phylogenetic tree based on coancestral relationships
- It regards homology as evidence of common ancestry
- Distance between taxa reflects a decreasing number of homologous characters
- Constructed phylogenetic tree is not necessarily the same as actual evolutionary relationship


## Selection

## Bottle neck



Origin of the species in a new niche Founder effect
Population bottleneck during the founding of the species
Increasing size of the population

## Emerging of new allele

 (mutation/ gene flow)Increasing diversity of the population as subclones develop

## MRCA is strain 1

MRCA of the population changes from strain 1 to strain 2 as all direct descendants of strain 1 are lost by drift
Selective sweep of strain 3 reduces the diversity and changes the MRCA from strain 2 to strain 3

Increasing diversity of the population as subclones develop

Population undergoes a reduction in size and diversity during a population bottleneck

MRCA of the population changes from strain 3 to strain 4 as strains are lost during the population bottleneck

Increasing size of the population
Increasing diversity of the population as subclones develop
MRCA of the population changes from strain 4 to strain 5 as all direct descendants of strain 4 are lost

## Terminology

- Clades: share a common ancestor that belongs to their own group
- Monophyletic groups (clades): contain taxa (taxonomic gr.) that are more closely related to each other than to any outside the group
- Dendogram = tree diagram that illustrate the arrangement of the clusters (cluster analysis) produced by hierarchical clustering (based on similarity)
- Speciation = new species that capable of making a living in a new way from the species which it arose
- Homolog: gene related to a second gene by descent from a common ancestral DNA sequence
- Ortholog = genes in different species, evolved from a common ancestral gene by speciation, retain the same function
- Paralogs = genes related by duplication within a genome, evolve new functions (within species)


## Why phylogenetic analysis?

- Determining the closest relatives of the organism and diversity
- Novel organism (species)
- Cluster analysis: outbreak of ID, genetic diseases
- Map pathogen strain diversity for vaccines
- Biodiversity studies
- Understanding microbial ecologies
- Discovering the function of a gene
- Orthologous/ paralogous genes
- Retracting the origin of a gene or organism
- Understand evolutionary history
- Recent common ancestor


## 4Divergence versus Convergence evolution

- Divergence evolution
- Accumulation of differences (mutations) between groups, can lead to the formation of new species
- Same species adapting to different pressure
- e.g. organisms with 5 digit pentadactyle limbs : humans, bats, and whales (homologous structures)
- Convergence evolution
- the acquisition of the same biological trait in unrelated lineages
- Differnt species adapting to the same pressure
- Analogous structures


Independently evolved genera of succulent plants


KIATICHAI FAKSRI, Ph.D (Medical microbiology)

## Divergent vs. Parallel vs. Convergent evolution



## Homology versus Homoplasy

## Homology =

Human "Hairs"

- Similarity derived from a common ancestor
- Homologous characters = useful for phylogenetic tree construction



## Homoplasy =

- Similarity due to independent acquisitions of the same or superficially similar characteristics
- Homoplasic characters = misleading picture of phylogeny



## (4) Rooted versus unrooted tree <br> 

Archaea 1
The root defines common ancestry

## Unrooted tree



Archaea 2$\}$ Monophyletic group
Archaea 3
Eukaryote 1


Rooted tree
(by outgroup)

## Number of OTUs (Taxa) and Number of Tree

| Number <br> of OTUs | Number of <br> unrooted trees | Number of <br> rooted trees |
| :---: | :---: | :---: |
| 2 | 1 | 1 |
| 3 | 1 | 3 |
| 4 | 3 | 15 |
| 5 | 15 | 105 |
| 6 | 105 | 945 |
| 7 | 954 | 10,395 |
| 8 | 10,395 | 135,135 |
| 9 | 135,135 | $34,459,425$ |
| 10 | $24,459,425$ | $2.13 \mathrm{E}+15$ |
| 15 | $2.13 \mathrm{E}+15$ | $8.00 \mathrm{E}+21$ |

So, if apply for long sequence data set, it may take a very long time for analysis

Nodes can be freely rotated without changing the relationships shown


Distance between species A and species $\mathrm{B}=\mathrm{AA}+\mathrm{BB}$

## Tree topology

(a) Is the following pair of trees identical in topology?

(b) Is the following pair of trees identical in topology?


15

- Root: origin of evolution
- Leaves: current organisms, spp., groups
- Branches: relationship between organisms, spp.
- Branch length: evolutionary time


## Cladograms versus Phylograms

## Cladogrames =

- branch lengths are meaningless



## Phylograms =

- Provide branch lengths



## Bootstrapping

- The same dataset >> many tree shapes (relationship): What is the most correct one?
- Statistical method to measures the accuracy of sampling distribution
= Characters (sites/ sequences) random resampling with replacement methods (e.g. 1000 times (replica))
- Frequency of occurrence of groups in the results support the accuracy of that groups
- Showing how often that relationships occurred in the replicate analyses
- Assess quality or reliability of a reconstructed tree


## Bootstrapping

|  | 1234567 |
| :--- | :--- |
| a | ATATAAA |
| b | ATTATAA |
| c | TAAAATA |
| d | TATAAAT |


|  | 1224567 |
| :--- | :--- |
| a | ATTTAAA |
| b | ATTATAA |
| c | TAAAATA |
| d | TAAAAAT |


|  | 1334567 |
| :--- | :--- |
| a | AAATAAA |
| b | ATTATAA |
| c | TAAAATA |
| d | TTTAAAT |


|  | 1234567 |
| :--- | :--- |
| a | ATATAAA |
| b | ATTATAA |
| c | TAAAATA |
| d | TATAAAT |


|  | 1244567 |
| :--- | :--- |
| a | ATTMAAA |
| b | ATAATAA |
| c | TAAAATA |
| d | TAAAAAT |


(a) (b)


- The number of bootstrap show the confidence of the tree topology (max = 100)
- In general: bootstrap value in particular branch $>95=$ correct



# Methods for phylogenetic tree analysis 

4 main (statistical) methods

1. Distance (NJ and UPGMA)
2. Parsimony
3. Maximum likelihood
4. Bayesian methods (not in detail!)
[Tree merging method e.g. consensus tree]
Different method may provide different tree Which one I should select for my data?

## 1. Distance based method

- Construct trees by evolutionary distances
- Minimum Evolution = best tree is the shortest length
- Concept
- Pairwise distances between taxa are calculated
- Tree topology \& branch lengths from distance matrix
- not accurate but good for continuous data/ large data
- Most common methods
- Neighbor Joining
- UPGMA


## \% similarity

Seq $A \ggg$ AGAUUCGUCUGUAGGUUUCCAC CAA
Seq $B \gg$ ACAUUCG UGUAUAGGUUU CCACU AA

## Seq A: AGAUUCGUCUGUAGGUUUCCACCAA

$$
|x\|\|\|\|x \mid x\|\|\|\|\|\|\|x\|
$$

Seq B: ACAUUCG UGUAUAGGUUU CCACU AA
0100000010100000000000100

No. of different character $=4$
the similarity between Seq $A$ and Seq $B$
$=21 / 25=0.84$

There are options for calculation similarity
"Score of transversion > transition"
Seq A: AGAUUCGUCUGUAGGUUUCCACCAA
|X|||||X|X||||||||||X||
Seq B: ACAUUCGUGUAUAGGUUUCCACUAA

## 0200000020100000000000100

the similarity between Seq $A$ and Seq $B$
$=19 / 25=0.76$

### 1.1 Neighbour joining

1. Calculate the distance for each taxon to others
2. Join the two nearest neighbours into a new node
3. Compute branch lengths from these two taxa to the new node
4. Compute the distance between the new node and all other taxa
5. Delete the joined taxa from the distance matrix and add the new node
6. Repeat until only 2 taxa remain, then join them

## Example of Neighbor-joining



Step 1: calculation : $\mathrm{Sx}=($ sum all Dx$) /$ (leaves - 2)

- $S(A)=(5+4+7+6+8) / 4=7.5$
- $S(B)=(5+7+10+9+11) / 4=10.5$
- $S(C)=(4+7+7+6+8) / 4=8$
- $S(D)=(7+10+7+5+9) / 4=9.5$
- $S(E)=(6+9+6+5+8) / 4=8.5$
- $S(F)=(8+11+8+9+8) / 4=11$

Step 2: Calculate pair with smallest M
Mij = Distance ij - Si - Sj
$\square$ Smallest are
$\square \mathrm{M}(\mathrm{AB})=\mathrm{d}(\mathrm{AB})-\mathrm{S}(\mathrm{A})-\mathrm{S}(\mathrm{B})=5-7.5-10.5=-13$
$\square M(D E)=5-9.5-8.5=-13$

|  | A | B | C | D | E |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | -13 |  |  |  |  | Matrix 2 |
| C | -11.5 | -11.5 |  |  |  |  |
| D | -10 | -10 | -10.5 |  |  |  |
| E | -10 | -10 | -10.5 | -13 |  |  |
| F | -10.5 | -10.5 | -11 | -11.5 | -11.5 |  |

Step 3: Create a node U
$\mathrm{S} 1 \mathrm{U}=(\mathrm{Dij} / 2)+(\mathrm{Si}-\mathrm{Sj}) / 2$
$\square U 1$ joins $A$ and $B$ :
$\square S(A \cup 1)=d(A B) / 2+(S(A)-S(B)) / 2$

$$
=5 / 2+(7.5-10.5) / 2=1
$$

$\square S(B U 1)=d(A B) / 2+(S(B)-S(A)) / 2$

$$
=5 / 2+(10.5-7.5) / 2=4
$$

Step 4: Join $A$ and $B$ according to $S$, and make all other taxa in form of a star. Branches in black are unknown length and Branches in red are known length


Step5: Calculate new distance matrix

$$
\begin{aligned}
D x u=(D i x & +D i x-D i i) / 2 \\
\square d(C U) & =(d(A C)+d(B C)-d(A B)) / 2 \\
& =(4+7-5) / 2=3 \\
\square d(D U) & =d(A D)+d(B D)-d(A B) / 2=6
\end{aligned}
$$

Same as EU and FU
$\square$ Then we get the new distance matrix

|  | U1 | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| U1 | 3 |  |  |  |
| D | 6 | $\mathbf{7}$ |  |  |
| E | 5 | 6 | 5 |  |
| F | $\mathbf{7}$ | 8 | 9 | 8 |

## Matrix 3

$\square$ Repeat 1 to 5 until all branches are done
$\square$ In this example, we will get this at the end


### 1.2 UPGMA

- Unweighted Pair Group Method with Arithmetic Mean
- Assumes a constant rate of evolution over time or among lineages (molecular clock hypothesis)
- This assumption have to be tested and justified before analysis

[^0]
## UPGMA

1. Compare the differences among taxa \& create distance matrix
2. Join and average the values of the closet match taxon (the smallest value have to be combined first)
3. The tree is build following the value of differences
4. Join the taxon until finish

## Cytochrom C comparisons

(Fitch and Margoliash, Science Vol. 155, 20 Jan. 1967)

|  |  | Turtle <br> A | Man B | Tuna C | Chicken <br> D | Moth E | Monkey F | $\begin{gathered} \text { Dog } \\ \text { G } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Turtle | A | ---- | ---- | ---- | -- | --- | ---- | ---- |
| Man | B | 19 | ---- | ---- | ---- | ---- | ---- | ---- |
| Tuna | C | 27 | 31 | ---- | -- | --- | -- | ---- |
| Chicken | D | 8 | 18 | 26 | ---- | ---- | ---- | ---- |
| Moth | E | 33 | 36 | 41 | 31 | ---- | ---- | ---- |
| Monkey | F | 18 | 1 | 32 | 17 | 35 | ---- |  |
| Dog | G | 13 | 13 | 29 | 14 | 28 | 12 | ---- |

19 difference in the amino acid sequences between man and turtle 1 difference in the amino acid sequences between man and monkey

Combine and average the closet match cells (same color code)
 So, combine B and F

The smallest number/2 = distance
Distance between $B$ and $F=0.5+0.5=1$

|  | A | BF | C | $\square$ | E | $G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A |  |  |  |  |  |  |
| BF | 18.50 |  |  |  |  |  |
| C | 27.00 | 31.50 |  |  |  |  |
| $\square$ | 8.00 | 17.50 | 26.00 |  |  |  |
| E | 3300 | 35.50 | 41.00 | 31.00 |  |  |
| $G$ | 13.00 | 12.50 | 2900 | 14.000 | 2000 |  |



| (AD) | A. | BF | E | E | G |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| BF | 18.00 |  |  |  |  |
| C | 26.50 | 31.50 |  |  |  |
| E | 32.00 | 35.50 | 41.00 |  |  |
| $\square$ | 13.50 | 12.50 | 29.00 | 20.00 |  |

The smallest number (boldface)
So, combine A and D

|  | AL | BF | C | E | G |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A |  |  |  |  |  |
| BF | 18.00 |  |  |  |  |
| C: | 26.50 | 31.50 |  |  |  |
| E | 3200 | 35.510 | 41.00 |  |  |
| $\underline{\square}$ | 1350 | 12.50 | 28.00 | 28.00 |  |




## UPGMA result



## Interpretation

After the reptile,mammal split, birds splitting from reptiles...

It is in perfect match with the "fossil record"

## Distance based method

- Advantages:
- A single tree is estimated: easy
- Fast with little computational expenditure
- Easy to handle large numbers of sequences
- Disadvantages:
- Lacks accuracy: no attempt to correct homoplasy
- No optimizing criterion
- Assume molecular clock (UPGMA)
- A single tree is estimated: no confidence


## Minimum spanning tree

- A tree is a connected graph without cycles
- The MST = the shortest length (when reach out) that connect all points (vertices)



## 2. Parsimony based method

- Minimize the number of changes that are needed to explain the data
- Use a simple algorithm to determine how many "steps" are required to explain the distribution of each character (i.e., prefer the simpler relationship)
- The steps may be base or amino-acid substitutions for sequence data, or gain and loss events
- Maximum parsimony tree: the most parsimonious distribution = preferred hypothesis of relationships among taxa

Searches through tree topologies in 'tree-space' (hill) using a 'hill-climbing' algorithm.


Local maxima



One way to reduce the probability of being stuck in a local maxima is to do repeat analyses from different starting points


The best tree


## Parsimony

- Advantages:
- When the data is simple = generally accurate method
- Does not reduce sequence information to a single number (that found from distance methods)
- Relatively fast and undemanding (faster than ML)
- Disadvantages
- Several typical "shortest trees">> Potentially ambiguous consensus topology (if trees with the same score)
- Prone to error under certain circumstances (homoplasy/ LBA)
- Cladogram: not provide branch lengths


## 3. Maximum likelihood (ML) method

- Using a model for sequence evolution
- Create a tree that gives the highest likelihood of occurring with the given data
- The process of sequence evolution is not as simple as parsimony assumes

0.25


FOG
0.25

- Probability to rain?
- Probability to rain in November?
- Probability to rain in November in Southern of Thailand?
- Probability to rain in 2 successive days, in November in Southern of Thailand?

$S$
- Transition/ Transversion and likelihood of amino acid changes
- House keeping gene and Conservative region
- Back substitution
- Multiple substitution (in one site or one branch)



## Maximum likelihood method

- Pick an evolutionary model (JC, K2P, GTR etc.)
- Generate all possible tree structures
- Calculate Likelihood of these trees and sum them to get the column likelihood for each OTU cluster.
- Calculate Tree Likelihood by multiplying the likelihood for each position
- Choose tree with greatest likelihood


## Models of Sequence Evolution

Imagine tossing a coin and getting a head. What is the likelihood of that result?

## Pick an Evolutionary Model

Jukes Cantor (JC)


All equal

Kimura (K2P)


Transition/transversion

General (GTR)


All free

Evolutionary (nucleotide substitution) Model
: rates of change from one nucleotide to another

- JC
- K2P
- GTR (most general usable model)

Models to describe rate variation among sites in a sequence

- gamma distribution (G)
- proportion of invariable sites (I)
(4) Sequence W:ACGCGTTGGG Sequence $X$ : A C G C G T T G G G Sequence Y: ACGCAATGAA

4 sequences 10 sites Sequence Z: ACACAGGGAA Select No. $6^{\text {th }}$ as example


Tree 3


Possible Trees (unrooted)

## All possible evolutionary paths (position 6th)

Tree 1
T T A G


GC

## Likelihood for one path of one position ( $\left.6^{\text {th }}\right)$

## Tree 1 <br>  <br> 1/64 paths <br> 

$L($ path $)=L($ root $) \times \Pi L$ (branches)

$$
=\mathrm{P}(\mathrm{G} \rightarrow \mathrm{~T}) \mathrm{P}(\mathrm{G} \rightarrow \mathrm{G}) \mathrm{P}(\mathrm{G} \rightarrow \mathrm{~A}) \mathrm{P}(\mathrm{G} \rightarrow \mathrm{G}) \mathrm{P}(\mathrm{~T} \rightarrow \mathrm{~T}) \mathrm{P}(\mathrm{~T} \rightarrow \mathrm{~T})
$$

## Sum over all (64) paths of one position (6th)

## Tree 1



L(Column Cluster 1) = $\mathbf{\Sigma}$ L(all possible Evolutionary Paths)

$$
=L(\text { path1 })+L(\text { path2 })+L(\text { path3 })+\ldots+L(\text { path64 })
$$

## Whole Sequence Likelihood For all (10) positions, all (640) paths

## Tree 1

## W X Y Z <br> 

$L($ Sequence $)=L($ root $) \times \Pi_{i} L$ (each position i)
Do the rest of the possible tree


Choose the tree with the "Maximum Likelihood" 62

## Maximum likelihood method

## Advantages

- Highly accurate, allows various forms of homoplasy to be corrected
- Single tree is produced that is generally precise (choose the best likely tree)


## Disadvantages

- Complexity process = slow and computationally demanding
- The hill-climbing algorithm is susceptible to local optima


## 4. Bayesian methods

- Maximum likelihood tries to find the best values (single tree with most likelhood) for the branch lengths and model parameters
- Bayesian inference allows these parameters to have some uncertainty (Distribution of trees)
- Maximum likelihood: the probability of the data given the model
- Bayesian inference: the probability of the model given the data (posterior probability)
- Bayesian inference requires a prior probability to be set for each parameter


## Bayesian methods



## Bayesian method

## Advantages:

- Potential for any complex model (more complex than ML)
- Provides tree and support for the relationships in a single analysis
- Able to break out of local maxima


## Disadvantages:

- Must be specified prior probabilities (require sufficient knowledge of these probabilities?)
- Must be run long enough (but never certain) for the result to smooth out


## Comparison of Methods

| Distance | Maximum parsimony | Maximum likelihood |
| :--- | :--- | :--- |
| Uses only pairwise <br> distances | Uses only shared <br> derived characters | Uses all data |
| Minimizes distance <br> between nearest <br> neighbors | Minimizes total <br> distance | Maximizes tree likelihood <br> given specific parameter <br> values |
| Very fast | Slow | Very slow |
| Easily trapped in local <br> optima | Assumptions fail when <br> evolution is rapid | Highly dependent on <br> assumed evolution model |
| Good for generating <br> tentative tree, or choosing <br> among multiple trees | Best option when <br> tractable (<30 taxa, <br> homoplasy rare) | Good for very small data <br> sets and for testing trees <br> built using other methods |

## Pro and cons

- Character based (ML/ MP) better than distance based (not reduce character as single event), but demanding higher computer.
- So, with >1000 taxa, distance based is appropriate to cove with limitation.
- NJ is better than UPGMA (molecular clock assumptions)/ provide single tree but ignore other possible tree.
- ML is better than MP because correct homoplasy, still sensitive to local optima.
- Bayasien is the best (posterior probability/ break local optima).

ML is generally the best, esp. for sequence data, but demanding

Most commonly used packages contain software for all three methods (Not Bayesian method)

It would be more confident to use more than 1 method to built the tree

## (4) Consensus tree; When there are 3 trees from analysif(6)

 8

## Tree 3

$2 / 3$ trees = 67\%
A \& B are from common ancestor (except Tree2)

Majority rule consensus
$3 / 3$ trees $=100 \%$
$A, B \& C$ are from common ancestor


Strict Consensus <br> \title{
Steps for building the tree
} <br> \title{
Steps for building the tree
}

Identify sequences of interest (protein, DNA or RNA etc.)

## FASTA format files



Construct phylogenetic tree

View and edit tree
Multiple sequence alignment



PHYML Etc.

Figtree Etc.

Alignment = hypothesis of positional homology between sequences Phylogeny is meaningless unless it is based on a well-made alignment
$>$ EP38001 (+) Ce hist. Hl his-24; range -299 to 100.
GAGAGTCAGGTCGTGTGAAAACCAATGCGTCGACTTCAGGGCCCAATTACTCGGTCATTT ATAATCGTTTTCTCTCGAATTTTGAGCACAATGTAGATAATGTCTTCAGCTATCAGATGT TATCAGGAAATTTCATAAAAATTGATCCGGAGTATCCAAATTGTCAGCGCCCGACACCTC CTCCTTTCGAGACCTGCTATCTTATTCGGTGCAGTAAGGGAGAGGCGGGATGTGTCCCCG CAGGGTGGTAGAAATTGGGTATATAAGAGAACGAGAGGACTCGCACAGTCATCACTTTTC AAGTGTCACCCAACCAACCAAACCGCCGTCGAACGATGTCTGATTCCGCTGTTGTTGCCG CCGCTGTCGAGCCAAAGGTCCCAAAGGCTAAGGCCGCCAA
>EP33004 (+) Ce hist. H2A-A his-12; range -299 to 100. ATGATTCCTTACGGGCATGACGTCTCTTCTTTCCGTCCTTTGGCTTCGTAACGGTCTTGG CGGCCTTCTTGGCTCCCTTGGCAGATGGCTTTGGTGGCATGTTGAGAGTTGGTGACTTGA AACAAGTGTGAGGAGACCCTTGTCTCCCTTCTCTTTTATTTGTGTCTGTGGTGGGAAGGA GGAGTCATTGAAGGGACAGGTGACATTCGGTCTGATGCTTATCGCTTGAAATGTGTCCCC GCAGTGTCTCCGCCTACCCACCACAGAAATTGTATATAATAGTGTCTCTGCAGTTGCCTC ATCAGATTC GATTCTATCAATCAAACAATGTCTGGACGTGGAAAGGGAGGCAAAGCCAAG ACCGGAGGAAAGGCCAAGTCCCGCTCATCAAGAGCCGGAC
 TGNFQYWNSKIQGVLGTQFLVEKMGTLTTSLVVPSKLNN--------EQQSSIFIHKTR----RKCKKNQSIVPVARLFGPAIFEASKLKVI
2 ------NSKIQGVLGTQFLVEKMGTLTTSLVVPSKLNN-------EQQSSIFIHKTR----RKCKKNQSIVPVARLFGPAIFEASKLKVI --------PRFKEIISYNFSVSKMGSLTTSLIVPSKFNT--------EKQSSIFIYKTR----RKSNKNQSIVPVARLFGPSIFEASKLKVI --------IILSIIIQTN---NSFQIOMGSLIIPSKLNTSSS--VLDHHHTSFFIYKTP----SKIKKIHS--PVARLFGPSIFEASKLKVI FFSGVLFCCYFNIEAFDLGFKRAEMCSLSAIMLLPTKLKPAYSDRRSNSSSSSSLFFNNR FSGVLFCCYFNIEAFDLGFKRAEMCSLSAIMLLPTKLKPAYSDKRSNSSSSSSLFFNNR ----------EAFDLGFKRAEMCSLSAIMLLPTKLKPAYSDKRSNSSSSSSLLFFNNR FSGVLFCCYFNIEAFDLGFKRAEMCSLSAIMLLPTKLKPAYSDRRSNSSSSSSSLFFNNR --PFLHQGTTVSSSLKDWNNNRNMGTLTTVPVLPSKLNKPS ----LSPRHNSLEPYYGR
--PFLHOGTTVSSSL KDWNNNRNMGTLTTVPVLPSKL NKPS

## - You know the best what is your biology of interest! -What are you doing!!!

## Alignment is critical Bad Alignment = bad tree

RSKKKNQSIVPVARLFGPAIFESSKLKVI
-RSKKKNQSIVPVARLFGPAIFESSKLKVI
RSKKKNQSIVPVTRLFGPAIFESSKLKVI
-RSKKKNQSIVPVARLFGPAIFESSKLKVI
-RVGKKNKAMVPVARLFGPAIFEASKLKVI
-RVGKKNKAMVPVARLFGPAIFEASKLKVI

## FASTA format

- Chose the most appropriate model to your data
- Maybe try many models, compare and consider


## 4 ree programs for phylogenetic analysis

There are hundreds of free available programs that involved in phylogenetic tree e.g.

- PhyML (ML): http://atgc.lirmm.fr/phym//
- PAUP* (NJ, MP, ML): http://paup.csit.fdsu.edu
- PHYLIP (NJ, MP, ML): http://evolution.genetics.washington.edu/phylip.html
- MrBayes (Bayesian): http://mrbayes.csit.fdsu.edu
- Splitstree (Networks): http://www.splitstree.org
- FindModel (Model Test): http//mww.ivivan.goovicontentsequuencefinidmoded/findmoded.hmm
- SeaView (Contains Clustal, Muscle, PHYLIP and PhyML + a simple tree viewer: http://pbil.univ-lyon1.fr/software/seaview.html
- Felsenstein's Phylogeny program page (links to available software): http://evolution.genetics.washington.edu/phylip/software.html


## Practices

- Construct the tree from sequences
- Using SeaView
- Contains Clustal, Muscle + PHYLIP and PhyML + a simple tree viewer
- Bootstrapping, branch length, Re-root
- Interpret the tree


## Recommended books, articles and links?

- How to read a phylogenetic tree: http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny
- Hall Phylogenetic trees made easy. Sinauer Associates.
- Page \& Holmes Molecular Evolution: A Phylogenetic Approach. Blackwell Science.
- Felsenstein Inferring Phylogenies. Sinauer Associates.
- Natural selection and variation http:/www.blackwellpublishing.com/ridley/EVOC04.pdf
- Evolutionary Developmental Biology http://www.blackwellpublishing.com/ridley/EVOC20.pdf
- Evolutionary and diversity http://www.blackwellpublishing.com/ridley/EVOC13.pdf
- Multiple alignment and phylogenetic analysis http://cmgm.stanford.edu/classes/pdf/phylogenetic.pdf
- MultiPhyl (ML via email): http://distributed.cs.nuim.ie/multiphyl.php
- Phylogeny.fr (Robust Phylogenetic Analysis For The Non-Specialist): http://www.phylogeny.fr/
"Nothing in Biology Makes Sense Except in the dhtof Evolution"


[^0]:    New Mexicans for Science and Reason example calculation of phylogenies: THE UPGMA METHOD http://www.nmsr.org/upgma.htm

