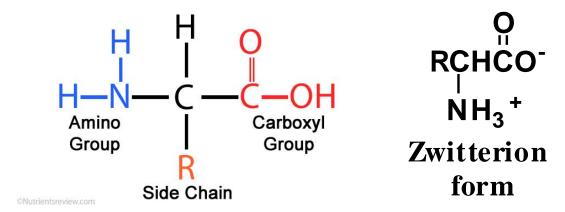

Amino Acids & Proteins

Patcharee Boonsiri


Outline

- 1.Amino acid and classification
 - Properties of amino acids
 - Test for amino acids
 - Role of amino acids
- 2. Peptide bond and its properties
- 3. Protein
 - Level of protein structure
 - Protein folding
 - Protein denaturation
 - Test for proteins
 - Roles of proteins in living organisms

Amino acid and classification

Amino acid

contains an amino group and a carboxyl group.

 α -Amino acid: the amino group is on the carbon adjacent to the carboxyl group.

Amino acids with aliphatic R-groups

Amino Acid	Symbol	Structure [*]	pK ₁ (COOH)	pK ₂ (NH ₂)	pK R Group		
	Amino Acids with Aliphatic R-Groups						
Glycine	Gly – G	H-CH-COOH NH ₂	2.4	9.8			
Alanine	Ala – A	CH ₃ CH-COOH NH ₂	2.4	9.9			
Valine	Val – V	H ₃ C CH-CH-COOH H ₃ C NH ₂	2.2	9.7			
Leucine	Leu – L	H ₃ C H ₃ C CH-CH ₂ -CH-COOH NH ₂	2.3	9.7			
Isoleucine	lle – I	H ₃ C-H ₂ C CH-CH-COOH H ₃ C NH ₂	2.3	9.8			

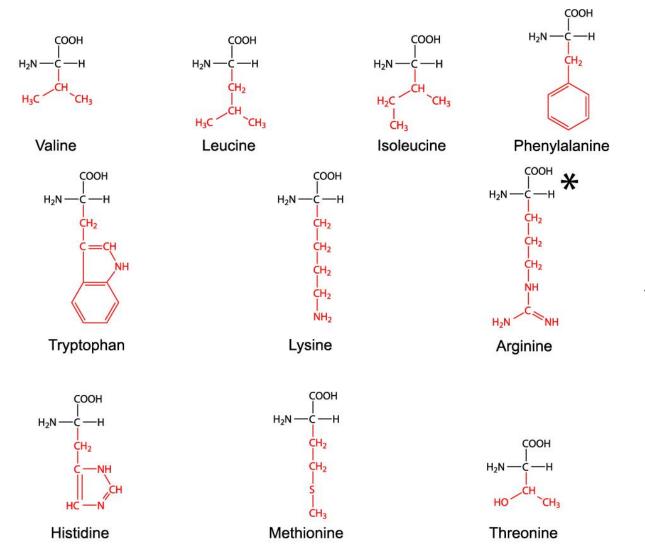
Amino acids with –OH groups and sulfurcontaining R-groups

Amino Acid	Symbol	Structure [*]	pK ₁ (COOH)	pK ₂ (NH ₂)	pK R Group		
	Non-Aromatic Amino Acids with Hydroxyl R-Groups						
Serine	Ser – S	HO-CH ₂ -CH-COOH NH ₂	2.2	9.2	≈13		
Threonine	Thr – T	H ₃ C HO CH-CH-COOH NH ₂	2.1	9.1	≈13		
	Amino Acids with Sulfur-Containing R-Groups						
Cysteine	Cys – C	HS-CH ₂ -CH-COOH NH ₂	1.9	10.8	8.3		
Methionine	Met – M	H_3 C-S- $(CH_2)_2$ - CH - $COOH$ NH_2	2.1	9.3			

Basic amino acids

Amino Acid	Symbol	Structure [*]	pK ₁ (COOH)	pK ₂ (NH ₂)	pK R Group	
	Basic Amino Acids					
Arginine	Arg – R	$\begin{array}{ccc} HN-CH_2-CH_2-CH_2-CH-COOH \\ C=NH & NH_2 \\ NH_2 \end{array}$	1.8	9.0	12.5	
Lysine	Lys – K	H ₂ N-(CH ₂) ₄ -CH-COOH NH ₂	2.2	9.2	10.8	
Histidine	His – H	CH ₂ -CH-COOH HN_N:	1.8	9.2	6.0	

Acidic acids and their amides

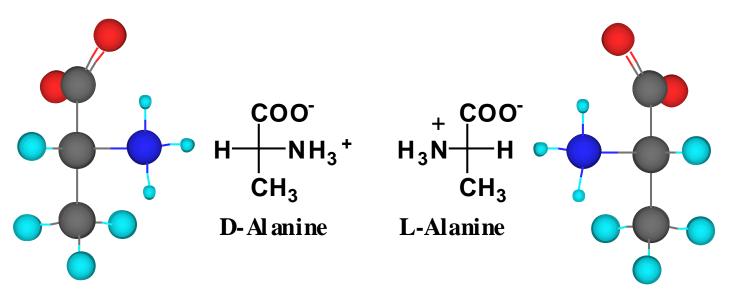

Amino Acid	Symbol	Structure [*]	pK ₁ (COOH)	pK ₂ (NH ₂)	pK R Group		
	Acidic Amino Acids and their Amides						
Aspartic Acid	Asp – D	HOOC-CH ₂ -CH-COOH NH ₂	2.0	9.9	3.9		
Asparagine	Asn – N	H ₂ N-C-CH ₂ -CH-COOH O NH ₂	2.1	8.8			
Glutamic Acid	Glu – E	HOOC-CH ₂ -CH ₂ -CH-COOH NH ₂	2.1	9.5	4.1		
Glutamine	Gln – Q	H ₂ N-C-CH ₂ -CH ₂ -CH-COOH O NH ₂	2.2	9.1			

Amino acids with aromatic rings and imino acid

Amino Acid	Symbol	Structure [*]	pK ₁ (COOH)	pK ₂ (NH ₂)	pK R Group		
	Amino Acids with Aromatic Rings						
Phenylalanine	Phe – F	CH ₂ -CH-COOH	2.2	9.2			
Tyrosine	Tyr – Y	HO—CH ₂ —CH-COOH	2.2	9.1	10.1		
Tryptophan	Trp – W	CH ₂ -CH-COOH NH ₂	2.4	9.4			
Imino Acids							
Proline	Pro – P	N COOH	2.0	10.6			

^{*}Backbone of the amino acids is red, R-groups are black

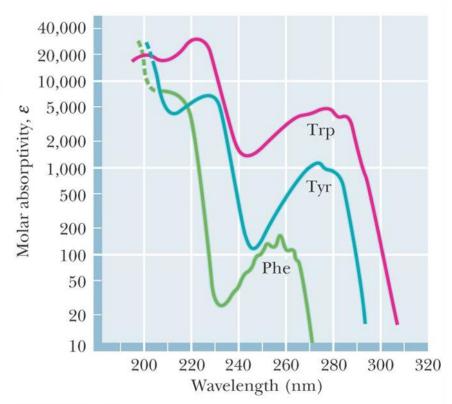
Essential amino acids


They cannot be synthesized by the body

They must come from food

Properties of amino acids

Chirality of amino acids

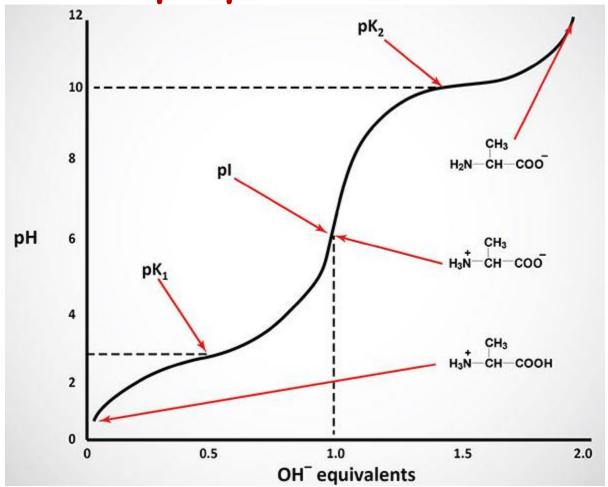

Amino acids have at least one stereocenter (the α -carbon) and are chiral except glycine

L-configuration at their α -carbon.

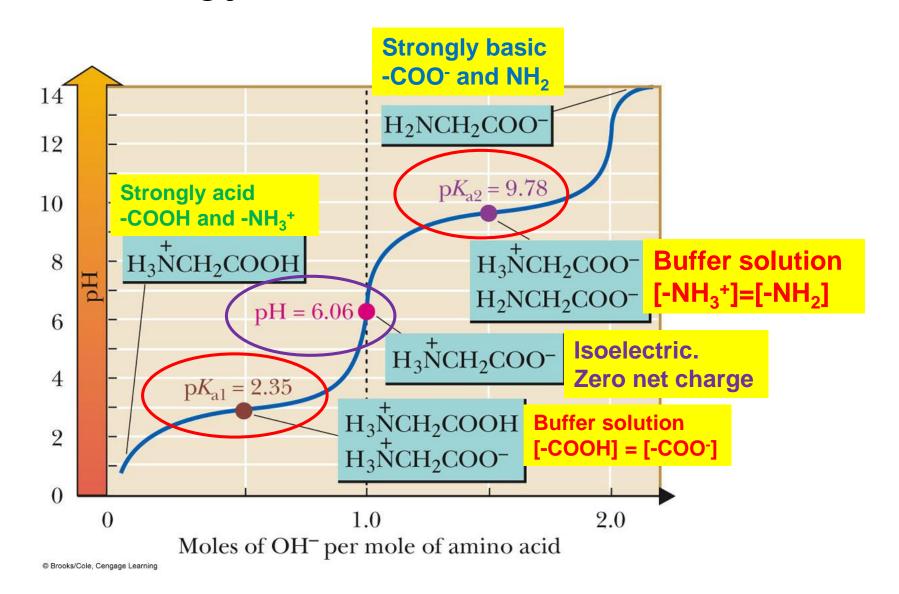
Optical property of amino acids

The ultraviolet absorption spectra of the aromatic amino acids at pH 6. (From Wetlaufer, D.B., 1962. Ultraviolet spectra of proteins and amino acids. Advances in Protein Chemistry 17:303–390.)

Aromatic R groups


Phenylalanine Tyrosine

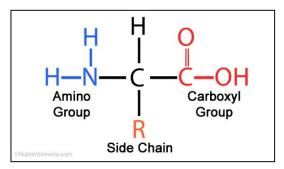
COOH₃N-C-H
CH₂
C=CH
NH
Tryptophan


The aromatic R-groups in amino acids absorb UV light with an absorbance maximum in the range of 280nm

© 2005 Brooks/Cole - Thomson

Acid-base properties

Titration of glycine with NaOH



Acidity: α -COOH Groups

The average p K_a of an α -COOH is 2.19 [stronger acids than acetic acid (p K_a 4.76)].

RCHCOOH +
$$H_2O =$$
 RCHCOO + H_3O^+ $pK_a = 2.19$
 NH_3^+ Note that the NH_2 will be a proton at all at the angles.

Note that the NH₂ will be protonated at these low pH

Acidity: α -NH₃+ groups

The average value of p K_a for an α -NH₃⁺ group is 9.47, compared with a value of 10.76 for a 1° alkylammonium ion.

RCHCOO +
$$H_2O$$
 RCHCOO + H_3O^+ $pK_a = 9.47$
 NH_3^+ NH_2

CH₃ CHCH₃ + H₂O
$$\longrightarrow$$
 CH₃ CHCH₃ + H₃O⁺ $pK_a = 10.60$ NH₃

Acidity: side chain -COOH

Due to the electronwithdrawing inductive effect of the α -NH₃+ group, side chain -COOH groups are also stronger than acetic acid.

> The effect decreases with distance from the α -NH₃⁺ group. Compare:

> > α -COOH group of alanine $(pK_2, 2.35)$

β-COOH group of aspartic acid (pK_a 3.86)

γ-COOH group of glutamic acid (p K_{2} 4.07)

Details: The Guanidine Group of Arg

The basicity of the guanidine group is attributed to the large resonance stabilization of the protonated form relative to the neutral form.

$$RNH-C \longrightarrow RNH-C \longrightarrow RNH-C \longrightarrow RNH-C \longrightarrow RNH-C \longrightarrow RNH-C \longrightarrow RNH-C \longrightarrow RNH_2$$

$$RN = C$$
 + $H_3 O^+$ $pK_a = 12.48$
 NH_2
ole group is a heterocyclic

Details: Imidazole Group The imidazole group is a heterocyclic aromatic amine

Not a part of the aromatic sextet; the proton acceptor

$$\begin{array}{c}
H_2O \\
H_3O^+
\end{array}$$
 $\begin{array}{c}
H_2O \\
H_3O^+
\end{array}$
 $\begin{array}{c}
NH_3^+ \\
COO^- + H_3O^+
\end{array}$
 $\begin{array}{c}
NH_3^+ \\
NH_3^+
\end{array}$

Isoelectric point (pl)

pH at which an amino acid, polypeptide, or protein has a net charge = 0

$$\begin{array}{c} H \\ \downarrow \\ H_3N-C-COOH \\ \downarrow \\ R \\ \hline cation \\ (at low pH) \end{array} \stackrel{H^+}{\underset{pK_1}{\longleftarrow}} \stackrel{+}{\underset{l}{\longleftarrow}} H_3N-C-COO^- \stackrel{H^+}{\underset{pK_2}{\longleftarrow}} \stackrel{H^+}{\underset{pK_2}{\longleftarrow}} H_2N-C-COO^- \\ \downarrow \\ R \\ \hline R \\ \hline R \\ \hline R \\ \hline (at high pH) \\ \end{array}$$

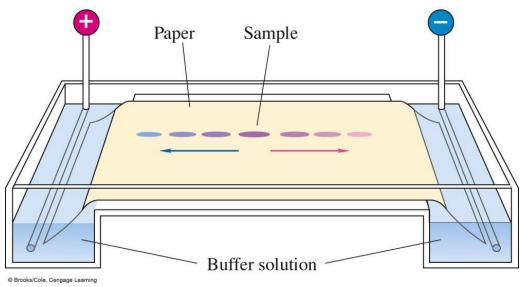
Example: pl of glycine falls between the p K_a values for the carboxyl and amino groups

$$pI = \frac{1}{2} (pK_a \alpha - COOH + pK_a \alpha - NH_3^+)$$
 $H_2N - C - COOH$
 H_3
 $H_2N - C - COOH$
 H_3
 H_3

Isoelectric Point (pl) net charge = 0

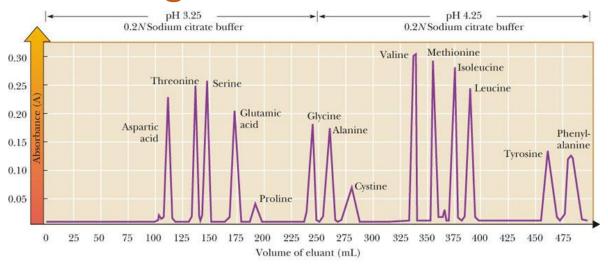
If pH is lower than pl then more protonated molecules If higher than pl then more negative charge

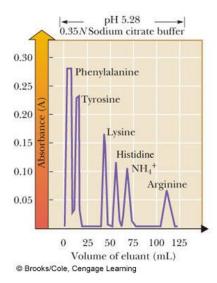
Nonpolar & polar side chains	pK_a of α -COOH	pK_a of α -NH ₃ ⁺	pK _a of Side Chain	pΙ
alanine	2.35	9.87		6.11
asparagine	2.02	8.80		5.41
glutamine	2.17	9.13		5.65
glycine	2.35	9.78		6.06
isoleucine	2.32	9.76		6.04
leucine	2.33	9.74		6.04
methionine	2.28	9.21		5.74
phenylalanine	2.58	9.24		5.91
proline	2.00	10.60		6.30
serine	2.21	9.15		5.68
threonine	2.09	9.10		5.60
tryp top han	2.38	9.39		5.88
valine	2.29	9.72		6.00


Isoelectric Point (pl)

Acidic Side Chains	pK _a of α–COOH	pK_a of α -NH $_3$	pK _a of Side Chain	pI
aspartic acid	2.10	9.82	3.86	2.98
glutamic acid	2.10	9.47	4.07	3.08
cysteine	2.05	10.25	8.00	5.02
tyrosine	2.20	9.11	10.07	5.63
Basic Side Chains	pK_a of α –COOH	pK_a of α -NH $_3$	pK _a of Side Chain	pI
arginine	2.01	9.04	12.48	10.76
histidine	1.77	9.18	6.10	7.64
lysine	2.18	8.95	10.53	9.74

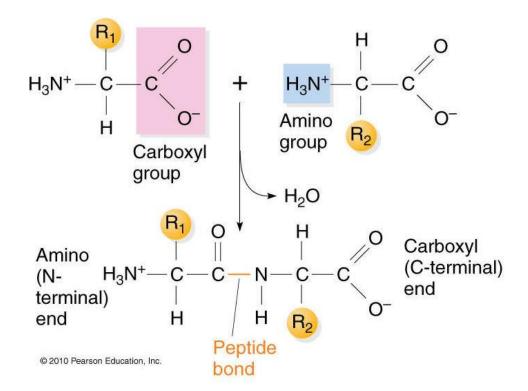
Ninhydrin test for amino group (-NH₂)


Purple product for all amino acids except proline(imino acid) which gives yellow product


Electrophoresis can separate amino acids based on their electric charge

- An electric potential is applied to the electrode vessels and amino acids migrate toward the electrode with charge opposite their own.
- Molecules with a high charge density move faster than those with low charge density.
- Molecules at isoelectric point remain at the origin.
- After derivitization with ninhydrin, 19 of the 20 amino acids give the same purple-colored anion; proline gives an orange-colored compound.

Ion exchange chromatography for analysis of a mixture of amino acids based on their electric charge


Role of amino acids

- 1. Monomer for proteins
- 2. Use for biosynthesis e.g. porphyrin, urea, purine, pyrimidine
- 3. Amino acids in some polypeptides: hormones and neurotransmitters
- 4. Tryptophan use for synthesis of serotonin, melatonin, niacin
- 5. Tyrosine use for synthesis of melanin, catecholamines
- 6.Glutamic acid use for synthesis of GABA (gamma-aminobutyric acid
- 7. Arginine use for synthesis of nitric oxide

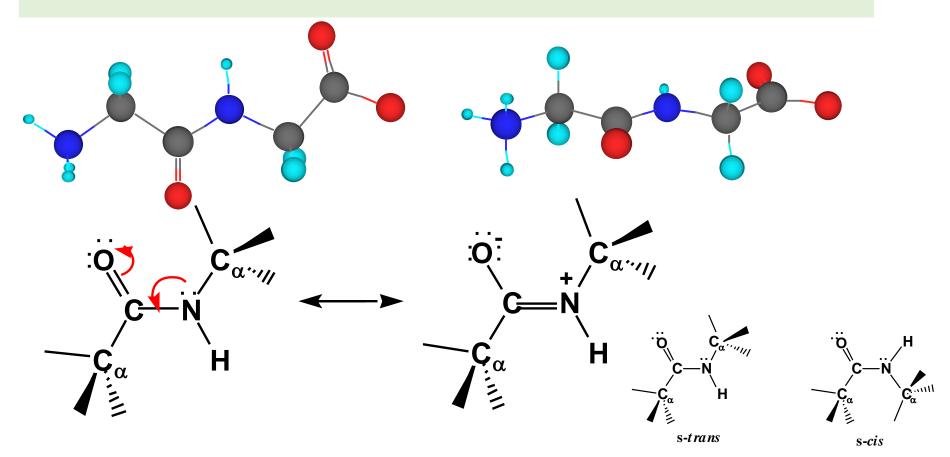
Polypeptides & Proteins

Proteins are long chains of amino acids joined by peptide bonds

Peptide bond: amide bond between the α -carboxyl group of one amino acid and the α -amino group of another

Peptides

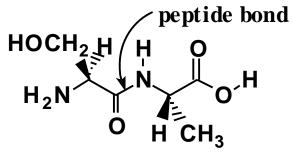
Peptide: a short polymer of amino acids joined by peptide bonds

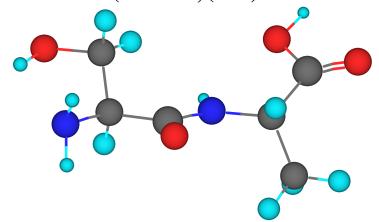

Polypeptide: many amino acids joined by peptide bonds

Protein: one or more polypeptide chains, molecular weight 5000 g/mol or greater

Peptide Bond Geometry

The four atoms of a peptide bond and the two alpha carbons joined to it lie in a plane with bond angles of 120° about C and N


Model of the zwitterion form of Gly-Gly peptide bond is restricted and the preferred s-trans geometry.


Dipeptide e.g. serinylalanine (Ser-Ala)

HOCH₂H

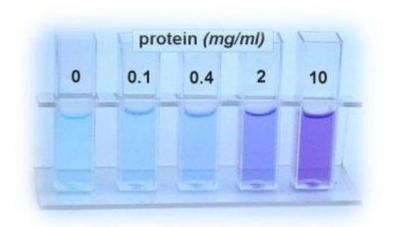
$$H_2$$
N O H H_2 N O H
 H_2 N O H
 H CH₃
Serine
(Ser, S) (Ala, A)
HOCH₂H

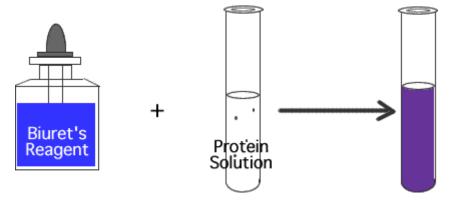
Serinylalanine (Ser-Ala, (S-A)

Tripeptide

peptides are written from the left, beginning with the free -NH₃⁺ group and ending with the free -COO⁻ group on the right

Tetrapeptide


Cys-Arg-Met-Asp At pH 6.0, its net charge is +1.


At pH 8 it would be half ionized pK_a 8.00 SCH3 C-terminal N-terminal amino acid amino acid $H_3 \tilde{N}$ NH_2 NH pK_a 12.48

Biuret test

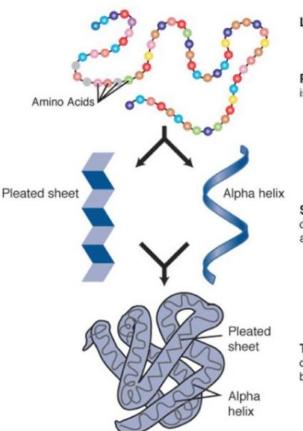
Peptide bonds of protein react with Cu 2+ in alkaline condition

https://biochemistryisagoodthing.files.wordpress.com/2013/02/biuret_test.png

http://biologyigcse.weebly.com/uploads/1/5/0/7/15070316/4492334.jpg?372 Proteases can be used to catalyze the hydrolysis of specific peptide bonds.

Enzyme	Catalyzes Hydrolysis of Peptide Bond Formed by Carboxyl Group of
Trypsin	Arginine, lysine
Chymotrypsin	Phenylalanine, tyrosine, tryptophan

Carboxypeptidase cleavage of C terminal AA Treatment of peptide with carboxypeptidase cleaves the peptide linkage adjacent to the free alpha carboxyl group. It may then be identified.


Level of protein structure

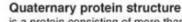
Primary structure

Secondary structure

Tertiary structure

Quaternary structure

Levels of protein organization

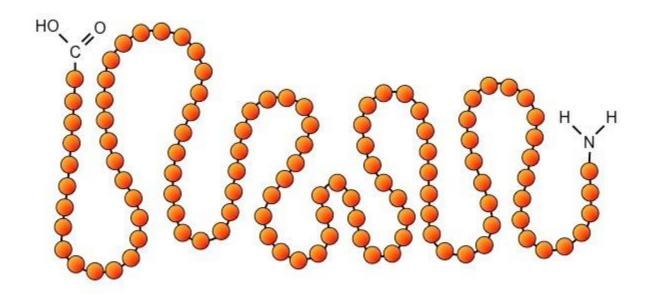

Primary protein structure is sequence of a chain of amino acids

Secondary protein structure

occurs when the sequence of amino acids are linked by hydrogen bonds

occurs when certain attractions are present between alpha helices and pleated sheets.

is a protein consisting of more than one amino acid chain.


http://3.bp.blogspot.com/-nB-

UqGed7XY/Tq7dSxXA2EI/AAAAAAAAABE/50uNbPAq8ds/s1600/protein+strure.jpg

Primary Structure

The sequence of amino acids in a polypeptide chain

read from the *N*-terminal amino acid to the *C*-terminal amino acid

Protein sequencing: the way to know amino acid composition of protein

Edman degradation method: Cleaves the *N*-terminal amino acid of a polypeptide chain

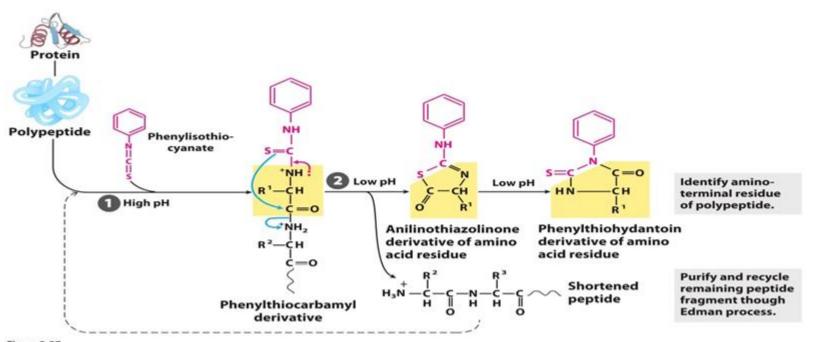
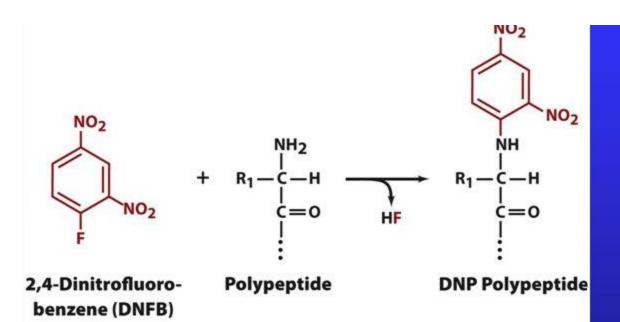



Figure 3-27
Lehninger Principles of Biochemistry, Sixth Edition

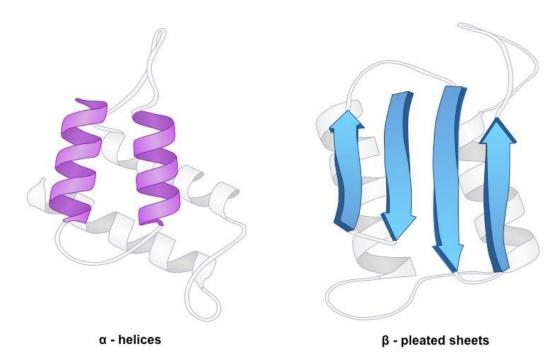
© 2013 W. H. Freeman and Company

Sanger's method: DNFB bind to terminal amino groups of a protein

Bind to terminal amino groups to form a yellow dinitrophenyl derivative

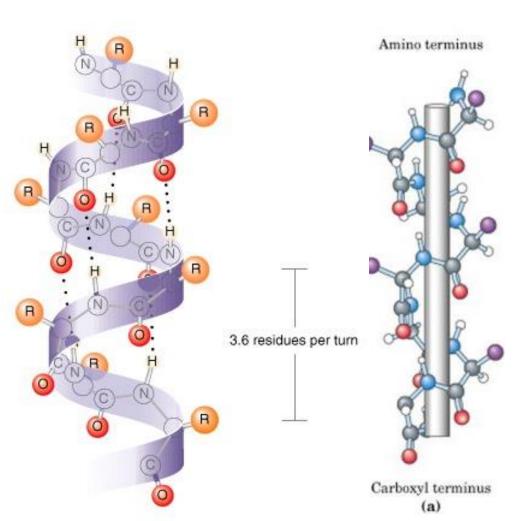
Hydrolyze protein

Identify terminal amino acid chromatographically


Box 5-1

© 2013 John Wiley & Sons, Inc. All rights reserved.

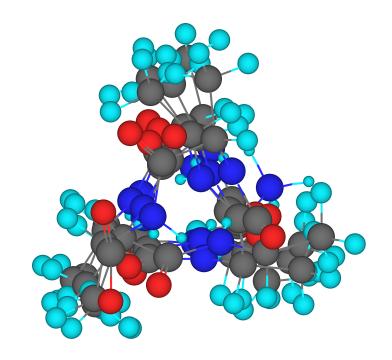
Secondary structure

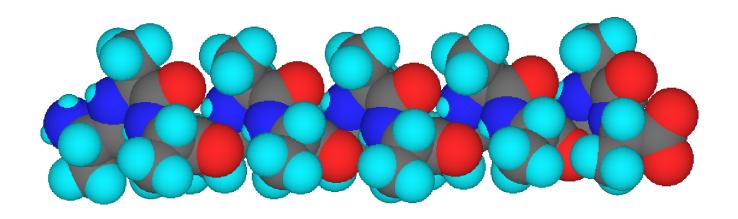

The ordered arrangements (conformations) of amino acids in localized regions of a polypeptide or protein.

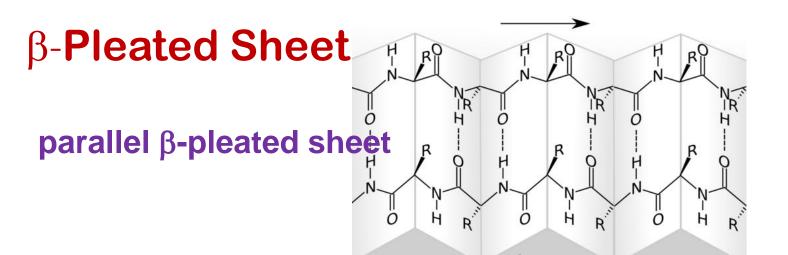
- •α-Helix
- •β-pleated sheet

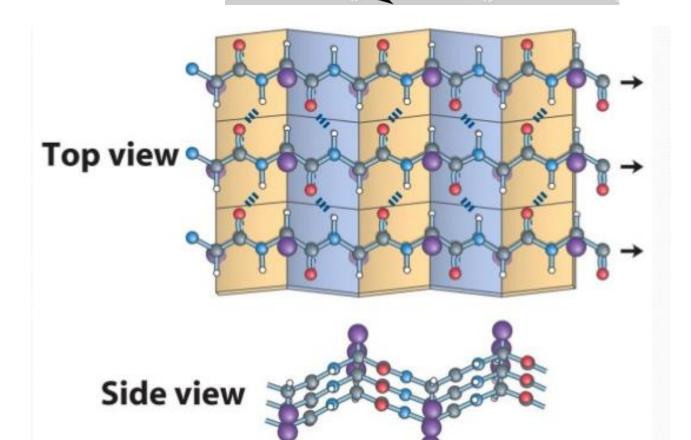
α -helix

a section of polypeptide chain coils into a right-handed spiral

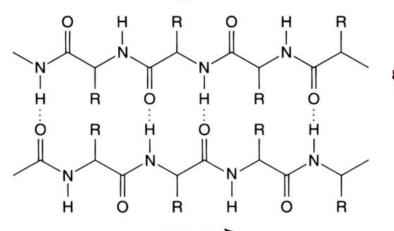


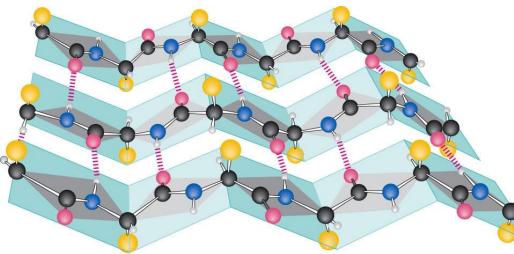

- All R- groups point outward from the helix
- 3.6 amino acids per turn of the helix
- Each peptide bond is s-trans and planar
- N-H groups of all peptide bonds point in the same direction, which is roughly parallel to the axis of the helix
- C=O groups of all peptide bonds point in the opposite direction, and also parallel to the axis of the helix
- The C=O group of each peptide bond is H-bond to the N-H group of the peptide bond four amino acid units away from it


Example


An a-helix of repeating units of L-alanine

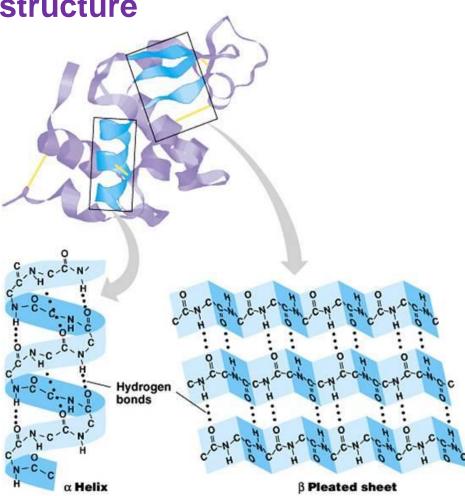
- A ball-and-stick model viewed looking down the axis of the helix.
- A space-filling model viewed from the side.





antiparallel β-pleated sheet

- The antiparallel β-pleated sheet consists of adjacent polypeptide chains running in opposite directions:
 - Each peptide bond is planar and has the s-trans conformation
 - The C=O and N-H groups of peptide bonds from adjacent chains point toward each other and are in the same plane → H-bond is possible between them
 - All R- groups on any one chain alternate, first above, then below the plane of the sheet, etc.

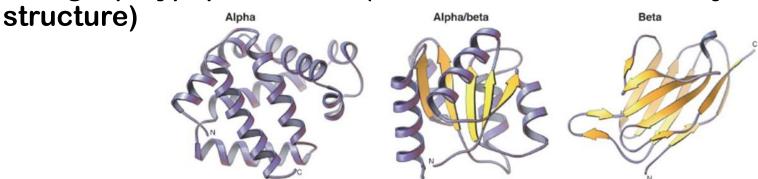

@ Brooks/Cole, Cengage Learning

Amino Acid	Sericin	Fibroin	Wool Keratin	Spider Silk
Glycine	13.9	43.7	8.4	37.1
Alanine	5.9	28.8	5.5	21.1
Valine	2.7	2.2	5.6	1.8
Leucine	1.1	0.5	7.8	3.8
Isoleucine	0.7	0.7	3.3	0.9
Serine	33.4	11.9	11.6	4.5
Theronine	9.7	0.9	6.9	1.7
Aspartic Acid	16.7	1.3	5.9	2.5
Glutamic Acid	4.4	1.0	11.3	9.2
Phenylanine	0.5	0.6	2.8	0.7
Tyrosine	2.6	5.1	3.5	
Lysine	3.3	0.3	2.6	0.5
Histidine	1.3	0.2	0.9	0.5
Arginine	3.1	0.5	6.4	7.6
Proline	0.6	0.5	6.8	4.3
Tryptophan	0.2	0.3	0.5	2.9
Cystine	0.1	0.2	9.8	0.3
Methionine	0.04	0.1	0.4	0.4

Table 2 Amino Acid Composition (mole %) of Spider dragline silk and Other Protein Fibers

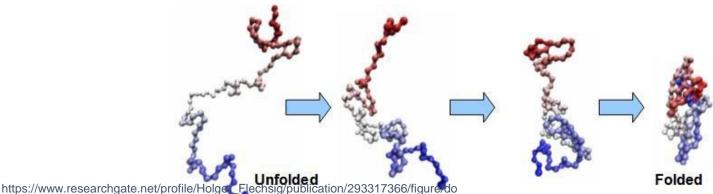
α -helix β-pleated sheet

Combination of secondary structure can form tertiary structure

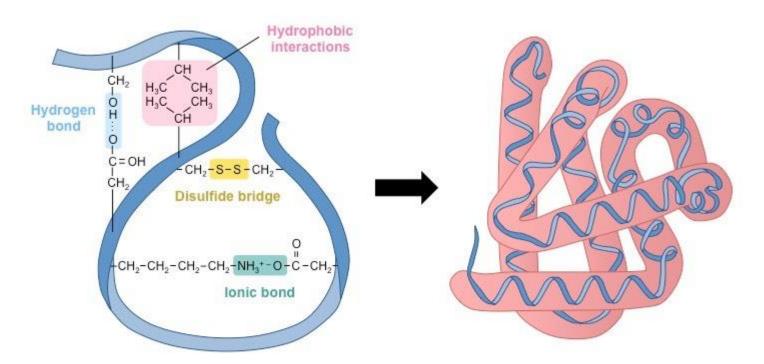


Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

 $https://d2jmvrsizmvf4x.cloudfront.net/d5G5CpdjToNgGKgwJg6Q_picture21327254818885.jpg$


Tertiary structure

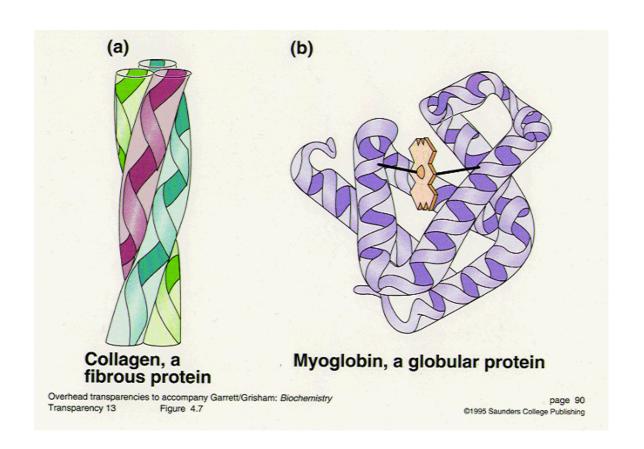
The three-dimensional arrangement in space of all atoms in a single polypeptide chain (combination of secondary



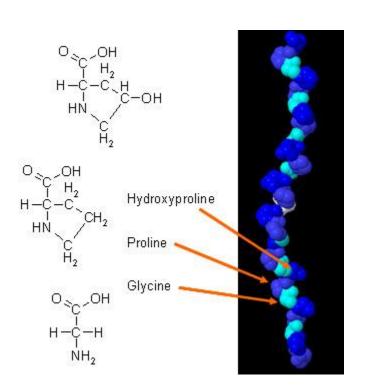
Protein folding

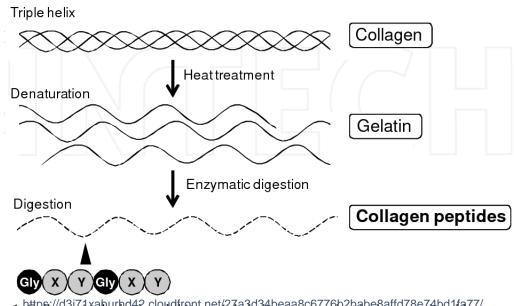
A physical process that a protein chain acquires its native 3dimensional structure, a conformation with biological function

wnload/fig1/AS:650031413604361@15319909/1211/Protein-folding-schematic-representation-Under-the-folding-process-the.png



Types of side chain interactions


Overall 3D shape (3° Structure)

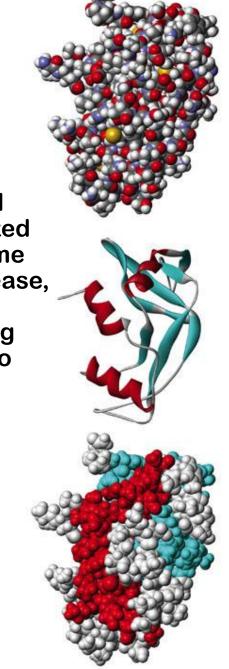

Fibrous protein

Globular protein

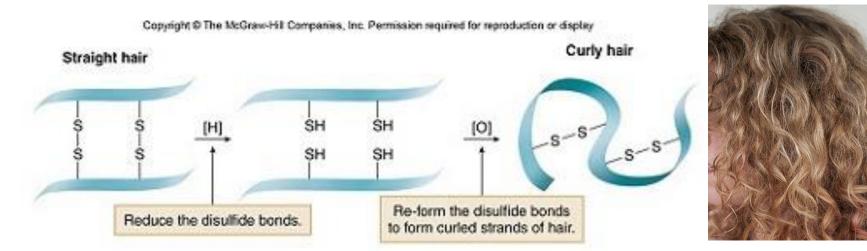
Fibrous protein Example: Triple helix e.g. collagen

https://d3i71xaburhd42.cloudfront.net/27a3d34beaa8c6776b2babe8affd78e74bd1fa77/ 3-Figure1-1.png

https://upload.orthobullets.com/topic/9013/images/collagen-alpha-chain.jpg

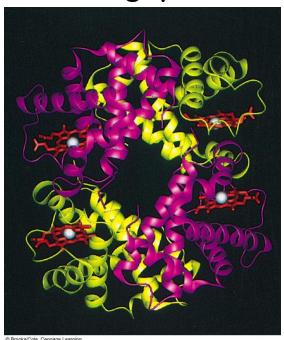

Globular protein Example:

PARRAGOLDOY - RESEARCH, SAKETY TRESING AND REGULATION


Human Serum Albumin Structure, Binding and Activity

Merrifield synthesized the enzyme ribonuclease, a protein containing 124 amino acids

Disulfide bond and hair curling



Disulfide bonds between the side chains of cysteine

Quaternary structure

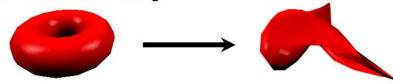
The arrangement of polypeptide chains into a noncovalently bonded aggregation


hydrophobic effect is the major factor stabilizing quaternary structure

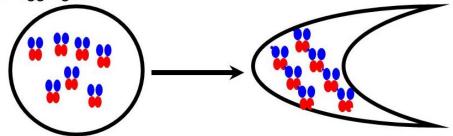
· •	Number of Subunits
Alcohol dehydrogena	se 2
Aldolase	4
Hemoglobin	4
Lactate dehydrogenas	e 4
Insulin	6
Glutamine synthetase	12
Tobacco mosaic virus protein disc	17

Quaternary structure of hemoglobin The β -chains in yellow, the heme ligands in red, and the Fe atoms as white spheres.

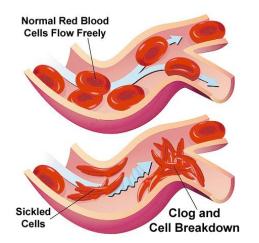
Role of proteins

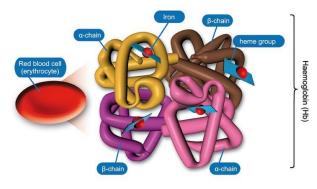


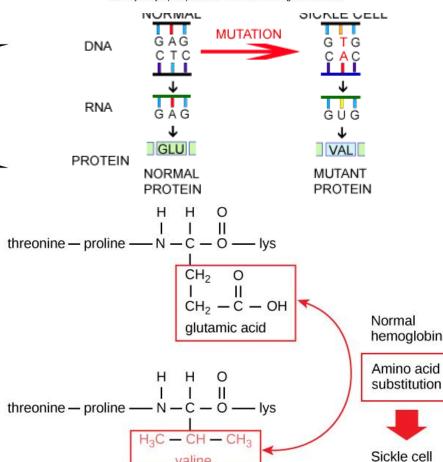
Role of proteins


Class of Protein	Function in the Body	Examples	
Structural	Provide structural components	Collagen is in tendons and cartilage. Keratin is in hair, skin, wool, and nails.	
Contractile	Movement of muscles	Myosin and actin contract muscle fibers.	
Transport	Carry essential substances throughout the body	Hemoglobin transports oxygen. Lipoproteins transport lipids.	
Storage	Store nutrients	Casein stores protein in milk. Ferritin stores iron in the spleen and liver.	
Hormone	Regulate body metabolism and nervous system	Insulin regulates blood glucose level. Growth hormone regulates body growth.	
Enzyme	Catalyze biochemical reactions in the cells	Sucrase catalyzes the hydrolysis of sucrose. Trypsin catalyzes the hydrolysis of proteins.	
Protection	Recognize and destroy foreign substances	Immunoglobulins stimulate immune responses.	

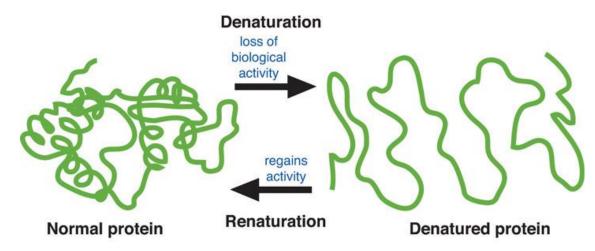
Sickle cell hemoglobin Small change in Hb


The change in cell structure arises from a change in the structure of hemoglobin.


A single change in an amino acid causes hemoglobin to aggregate.


https://images.slideplayer.com/13/3881634/slides/slide_2.jpg

Structure of haemoglobin


Each erythrocyte (RBC) contains ~270 million haemoglobin molecules

hemoglobin

Protein denaturation

agents: pH, temp, ionic strength, solubility

https://2012books.lardbucket.org/books/an-introduction-to-nutrition/section_10/ca6893e3fff0790df3f609815c619145.jpg

Example albumin (white egg)

Summary

Amino acids (AA) are monomer of proteins. AA can be classified according to their side chains.

AA joined by peptide bond can form polypeptides/proteins.

AA joined by peptide bond can form polypeptides/proteins.

There are 4 level of protein structure: primary, secondary, tertiary and quaternary structure.

AA, polypeptides and proteins play role in the body.