Homework Chapter 2.

Problem 2-1: Determine the magnitude and angle θ of **F** so that the particle is in equilibrium.

Problem 2-2: The gusset plate is subjected to the forces of four members. Determine the force in member *B* and its proper orientation θ for equilibrium. The forces are concurrent at point *O*.

F	=	12 kN
F_1	=	8 kN
F_2	=	5 kN
θ_1	=	45°

Problem 2-3: The flowerpot of mass M is suspended from three wires and supported by the hooks at B and C. Determine the tension in AB and AC for equilibrium.

Given:

Problem 2-4: Blocks D and F weigh W1 each and block E weighs W2. Determine the sag s for equilibrium. Neglect the size of the pulleys.

Problem 2-5: The block of mass *M* is supported by two springs having the stiffness shown. Determine the unstretched length of each spring.

Given:

Problem 2-6: Determine the magnitudes of F_1 , F_2 , and F_3 for equilibrium of the particle.

Problem 2-7: Determine the magnitudes of F_1 , F_2 , and F_3 for equilibrium of the particle $F = \{-9i - 8j - 5k\}$.

Given:

Problem 2-8: If the bucket and its contents have a total weight *W*, determine the force in the supporting cables *DA*, *DB*, and *DC*.

Problem 2-9: Determine the stretch in each of the two springs required to hold the crate of mass m_c in the equilibrium position shown. Each spring has an unstretched length δ and a stiffness k.

Given:

Problem 2-10: The flowerpot has weight W. Determine the tension developed in each cord for equilibrium.

$$W = 100 \text{ N}$$

 $a = 0.6 \text{ m}$
 $b = 0.6 \text{ m}$
 $c = 2.4 \text{ m}$
 $d = 2.1 \text{ m}$
 $e = 0.9 \text{ m}$
 $f = a$

