Homework Chapter 2.

Problem 2-1: Determine the magnitude and angle θ of \mathbf{F} so that the particle is in equilibrium.

Given :
$F_{1}=4.5 \mathrm{kN}$
$F_{2}=7.5 \mathrm{kN}$
$F_{3}=2.25 \mathrm{kN}$
$\alpha=60^{\circ}$
$\phi=30^{\circ}$

Problem 2-2: The gusset plate is subjected to the forces of four members. Determine the force in member B and its proper orientation θ for equilibrium. The forces are concurrent at point O.

Given:
$F=12 \mathrm{kN}$
$F_{1}=8 \mathrm{kN}$
$F_{2}=5 \mathrm{kN}$
$\theta_{1}=45^{\circ}$

Problem 2-3: The flowerpot of mass M is suspended from three wires and supported by the hooks at B and C. Determine the tension in $A B$ and $A C$ for equilibrium.

Given:
$M=20 \mathrm{~kg}$
$l_{1}=3.5 \mathrm{~m}$
$l_{2}=2 \mathrm{~m}$
$l_{3}=4 \mathrm{~m}$
$l_{4}=0.5 \mathrm{~m}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

Problem 2-4: Blocks D and F weigh W1 each and block E weighs W2. Determine the sag sfor equilibrium. Neglect the size of the pulleys.

Given:
$W_{1}=50 \mathrm{~N}$
$W_{2}=80 \mathrm{~N}$
$a=1.2 \mathrm{~m}$

Problem 2-5: The block of mass M is supported by two springs having the stiffness shown. Determine the unstretched length of each spring.

Given:

$$
\begin{aligned}
M & =30 \mathrm{~kg} \\
l_{1} & =0.6 \mathrm{~m} \\
l_{2} & =0.4 \mathrm{~m} \\
l_{3} & =0.5 \mathrm{~m} \\
K_{A C} & =1.5 \mathrm{kN} / \mathrm{m} \\
K_{A B} & =1.2 \mathrm{kN} / \mathrm{m} \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Problem 2-6: Determine the magnitudes of $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} for equilibrium of the particle.
Given:

$$
\begin{aligned}
F_{4} & =800 \mathrm{~N} \\
\alpha & =60^{\circ} \\
\beta & =30^{\circ} \\
\gamma & =30^{\circ} \\
c & =3 \\
d & =4
\end{aligned}
$$

Problem 2-7: Determine the magnitudes of $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} for equilibrium of the particle $\mathbf{F}=\{-9 \mathrm{i}-8 \mathrm{j}-5 \mathrm{k}\}$.

Given:
$F=(-9 \mathrm{i}-8 \mathrm{j}-5 \mathrm{k}) \mathrm{kN}$
$a=4 \mathrm{~m}$
$b=2 \mathrm{~m}$
$c=4 \mathrm{~m}$
$\theta_{1}=30^{\circ}$
$\theta_{2}=60^{\circ}$
$\theta_{3}=135^{\circ}$
$\theta_{4}=60^{\circ}$
$\theta_{5}=60^{\circ}$

Problem 2-8: If the bucket and its contents have a total weight W, determine the force in the supporting cables $D A, D B$, and $D C$.

Given:
$W=100 \mathrm{~N}$
$a=0.9 \mathrm{~m}$
$b=1.35 \mathrm{~m}$
$c=0.75 \mathrm{~m}$
$d=0.9 \mathrm{~m}$
$e=0.45 \mathrm{~m}$
$f=0.45 \mathrm{~m}$

Problem 2-9: Determine the stretch in each of the two springs required to hold the crate of mass m_{c} in the equilibrium position shown. Each spring has an unstretched length δ and a stiffness k.

Given:

$$
\begin{aligned}
m_{c} & =20 \mathrm{~kg} \\
\delta & =2 \mathrm{~m} \\
k & =300 \mathrm{~N} / \mathrm{m} \\
a & =4 \mathrm{~m} \\
b & =6 \mathrm{~m} \\
c & =12 \mathrm{~m}
\end{aligned}
$$

Problem 2-10: The flowerpot has weight W. Determine the tension developed in each cord for equilibrium.

Given:

$W=100 \mathrm{~N}$
$a=0.6 \mathrm{~m}$
$b=0.6 \mathrm{~m}$

$c=2.4 \mathrm{~m}$
$d=2.1 \mathrm{~m}$
$e=0.9 \mathrm{~m}$
$f=a$

