Homework Chapter 3

Problem 3-1: The Snorkel Co. produces the articulating boom platform that can support a weight W. If the boom is in the position shown, determine the moment of this force about points A, B, and C.

Problem 3-2: The force $\mathbf{F}=\{40 \mathbf{i}-5 \mathbf{j}+5 \mathbf{k}\} \mathrm{N}$ is applied to the handle of the box wrench. Determine the component of the moment of this force about the z axis which is effective in loosening the bolt.

Given:

$a=75 \mathrm{~mm}$
$b=200 \mathrm{~mm}$
$c=50 \mathrm{~mm}$

Problem 3-3: Determine the resultant moment of the two forces about the $O a$ axis. Express the result as a Cartesian vector.

Problem 3-4: Determine the magnitude of the moment of the force $\mathbf{F}=\{50 \mathrm{i}-20 \mathrm{j}-80 \mathrm{k}\} \mathrm{N}$ about the base line CA of the tripod.

Problem 3-5: Determine the moment of each force acting on the handle of the wrench about the a axis. Take $\mathbf{F}_{1}=\{-10 i+20 j-40 k\} \mathrm{N}, \mathbf{F}_{2}=\{15 i+10 \mathrm{j}-30 k\} \mathrm{N}$.

Problem 3-6: Determine the magnitude and sense of the couple moment.

Problem 3-7: A clockwise couple $\mathrm{M}=5 \mathrm{~N} . \mathrm{m}$ is resisted by the shift of the electric motor. Determine the magnitude of the reactive forces and R which act at supports A and B so that the resultant of the two couples is zero.

Problem 3-8: If the resultant couple of the three couples acting on the triangular block is to be zero, determine the magnitude of forces \mathbf{F} and \mathbf{P}.

Problem 3-9: Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member CD, measured from end C.

Problem 3-10: Handle forces \mathbf{F}_{1} and \mathbf{F}_{2} are applied to the electric drill. Replace this system by an equivalent resultant force and couple moment acting at point O. Express the results in Cartesian vector form.

