Homework Chapter 7

Problem 7-1: The horizontal force is **P**. Determine the normal and frictional forces acting on the crate of weight *W*. The friction coefficients are μ_k and μ_s .

Given:

W = 1500 N P = 400 N	P
$\mu_s = 0.3$	e e
$\mu_k = 0.2$	
$\theta = 20 \deg$	

Problem 7-2: Determine the friction force on the crate of mass *M*, and the resultant normal force and its position *x*, measured from point *A*, if the is force **P**.

Given:

M = 40 kg a = 400 mm b = 800 mm c = 200 mm P = 300 N $\mu_s = 0.5$ $\mu_k = 0.2$ d = 3e = 4

Problem 7-3: The crate has a mass *M* and is subjected to a towing force **P** acting at a θ_1 angle with the horizontal. If the coefficient of static friction is μ_s , determine the magnitude of **P** to just start the crate moving down the plane.

Problem 7-4: The motorcyclist travels with constant velocity along a straight, horizontal, banked road. If he aligns his bike so that the tires are perpendicular to the road at A, determine the frictional force at A. The man has a mass of M_C and a mass center at G_C , and the motorcycle has a mass of M_m and a mass center at G_m . If the coefficient of static friction at A is μ_A , will the bike slip?

Given:

 $M_m = 120 \text{ kg}$ $M_C = 60 \text{ kg}$ $\mu_A = 0.4$ $\theta = 20^{\circ}$ $g = 9.81 \text{ m/s}^2$

Problem 7-5: The man has a weight *W*, and the coefficient of static friction between his shoes and the floor is μ_s . Determine where he should position his center of gravity *G* at *d* in order to exert the maximum horizontal force on the door. What is this force?

Problem 7-6: The crate has a weight W and a center of gravity at *G*. Determine the horizontal force **P** required to tow it. Also, determine the location of the resultant normal force measured from *A*.

Given:

a = 1 m

b = 0.9 m

c = 0.6 m

W = 1000 N

h = 1.2 m $\mu_s = 0.4$

Problem 7-7: Determine the force **P** needed to lift the load of weight *W*. Smooth rollers are placed between the wedges. The coefficient of static friction between *A* and *C* and between *B* and *D* is μ_s . Neglect the weight of each wedge.

Problem 7-8: The wedge is used to level the member. Determine the reversed horizontal force $-\mathbf{P}$ that must be applied to pull the wedge out to the left. The coefficient of static friction between the wedge and the two surfaces of contact is μ_s . Neglect the weight of the wedge.

Given:

Problem 7-9: Determine the smallest couple moment, which can be applied to the wheel of weight W_I that will cause impending motion. The cord is attached to the block of weight W_2 , and the coefficients of static friction are μ_B and μ_D .

Given:

Problem 7-10: If the spring is compressed a distance δ and the coefficient of static friction between the tapered stub *S* and the slider *A* is μ_{SA} , determine the horizontal force **P** needed to move the slider forward. The stub is free to move without friction within the fixed collar *C*. The coefficient of static friction between *A* and surface *B* is μ_{AB} . Neglect the weights of the slider and stub.

Given:

$$\delta = 60 \text{ mm}$$
$$\mu_{SA} = 0.5$$
$$\mu_{AB} = 0.4$$
$$k = 300 \text{ N/m}$$
$$\theta = 30^{\circ}$$

