

Standards Used

ISO 14688

International Organization for Standardization (ISO)

Geotechnical investigation and testing — Identification and classification of soil

ISO 14689

International Organization for Standardization (ISO)

Geotechnical investigation and testing — Identification, description and classification of rock

BS 5930: 1999

Amendment 1 (2007)

British Standards Institution

The code of practice for site investigations

Word Order

	Coarse soil	Fine Soil	Rock						
1	Relative Density (if SPT-N is available)	Consistency Q	Strength Q						
2		Bedding							
3	Colour (Soi	l color chart) 👝	Colour (Rock color chart)						
4	Secondary Constituents in order of the following for coarse and very • particle dimensions • shape • sorting • strength • lithology • composition		 Secondary Constituents matrix (for clast supported materials) clasts (for matrix supported materials) 						
5	Minor Constituents Minor Constituents Minor Constituents								

Word Order (Cont.)

	Coarse soil	Fine Soil	Rock						
6	Particle dimensions, shape, strength, sorting, and lithology of PRINCIPAL SOIL TYPE	PRINCIPAL SOIL TYPE	ROCK NAME						
7	Minor Constituents other information	Minor Constituents other information	Minor Constituents other information						
8	GEOLOGICA	L FORMATION including weathering	classification						
9	Additional information on principal or secondary constituents	Additional information on principal or secondary constituents							
10	Mass characteristics such as								
	<u>Weathering</u> Weathering								
	<u>Fabric</u> Discontinuities								
	<u>Discontinuities</u>		Fracture state						

Consistency (fine soils)

Extremely soft	Finger pushed in easily to full extent; unable to maintain shape.
Very soft	Finger easily pushed in up to 25 mm; exudes between fingers.
Soft	Finger pushed in up to 10 mm; moulded by light finger pressure.
Firm	Thumb makes impression easily; cannot be moulded by finger; rolls to thread.
Stiff	Can be indented slightly by thumb; crumbles, breaks; remoulds to lump.
Very Stiff	Indented by thumbnail; crumbles, does not remould.
Hard	Scratched by thumbnail; brittle behaviour.

Strength (rocks)

Weak	Can be peeled with a pocket knife with difficulty; shallow indentation made by firm blow with point of a geological hammer; rock broken by hammer blows when sample held in hand; thin slabs, corners or edges can be broken off with heavy hand pressure.	Chalk, claystone, potash, marl, siltstone, shale, rocksalt		
Medium strong	Cannot be scraped or peeled with a pocket knife; specimen resting on a solid surface can be fractured with a single blow from a geological hammer.	Concrete, phyllite, schist, siltstone		
Strong	Specimen resting on a solid surface requires more than one blow of a geological hammer to fracture it.	Limestone, marble, sandstone, schist		
Very strong	Specimen requires many blows of a geological hammer to fracture it; specimen chipped by hammer blows.	Sandstone, basalt, gabbro, gneiss, granodiorite, tuff		
Extremely strong	Specimen can only be chipped with a geological hammer; can only be broken by sledge hammer; rings on hammer blows.	Fresh basalt, flint, gneiss, granite, quartzite		

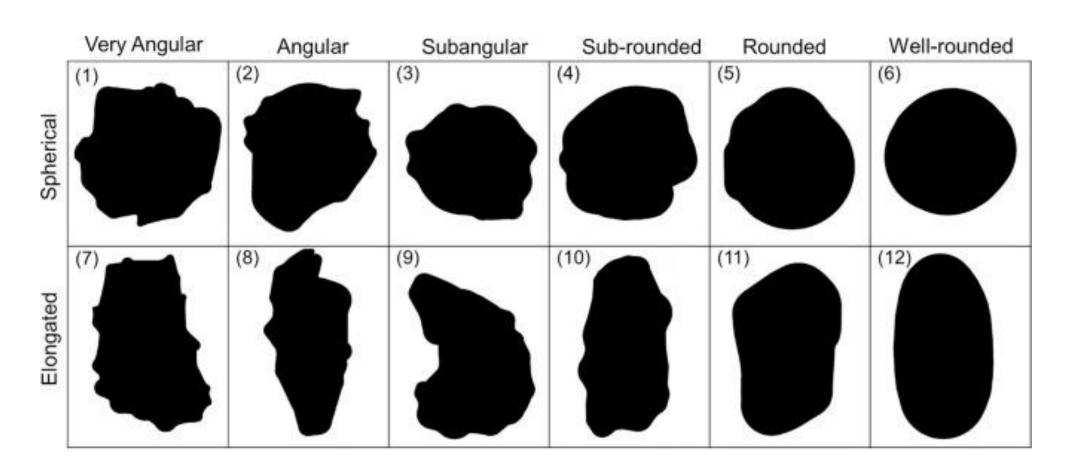
Bedding Types

Bedded > 20 mm

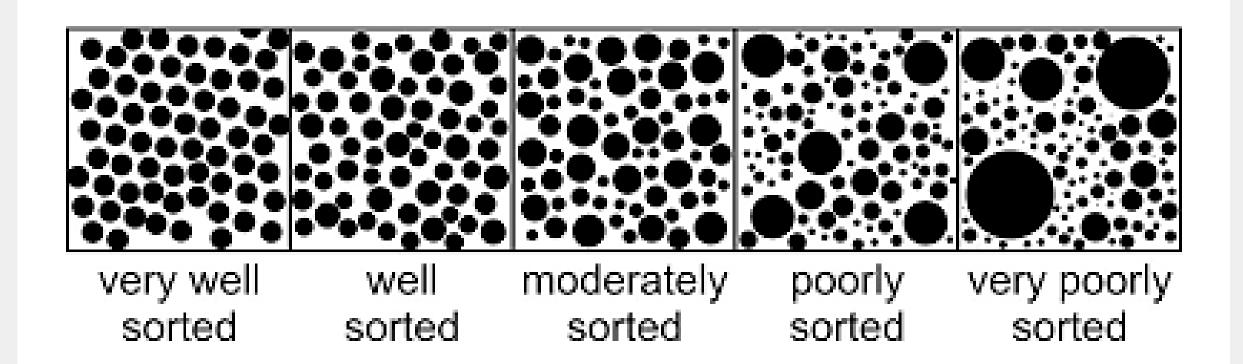
Laminated < 20 mm

Massive (no beds)

Interbedded Interlaminated


Bedding Thickness

Typical thickness or spacing (mm)	Bedding term
over 2000	Very thickly bedded
2000-600	Thickly bedded
600-200	Medium bedded
200-60	Thinly bedded
60-20	Very thinly bedded
20-6	Thickly laminated
under 6	Thinly laminated


Bedding Description Example

- thickly interlaminated SAND and CLAY
- massive SANDSTONE

Shape

Sorting

Patterns

Description (adj.) for colour patterns

mottled	เป็นดวง จุด หรือวง ขนาดไม่เท่ากันก็ได้
spotted	เป็นจุด ขนาดค่อนข้างคงที่
stained	มีรอยด่าง รอยเปื้อน
streaked	เป็นสาย หรือเป็นเส้นยาว ไม่จำเป็นต้องขนาน
striped	เป็นเส้นบาง ค่อนข้างขนาน
banded	เป็นแถบ (เส้นหนา) ค่อนข้างขนาน
gleyed	เป็นสีเทา หรือ เทาอ่อน (see glossary)

streaked

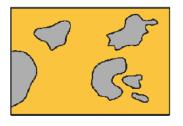
orange sandstone with **streaks** of red and orange (iron), blue and green (copper), brown and black (manganese), and white (limonite)

https://www.nps.gov/piro/learn/nature/geologicfo rmations.htm

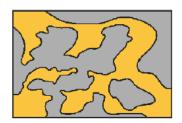
mottled

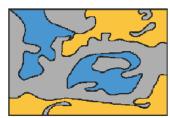
dark gray (dolomite) **mottled** gray limestone

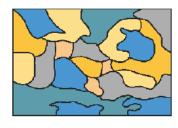
https://www.mdpi.com/2075-163X/13/9/1172

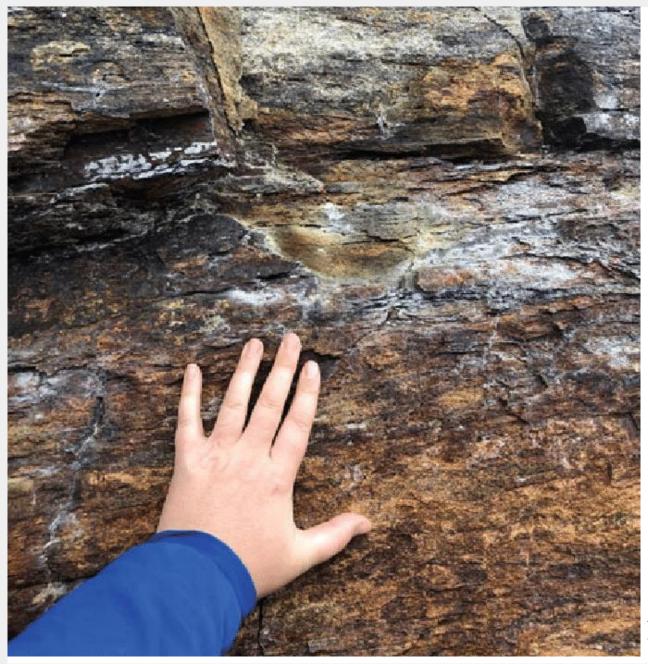

Description of Colour Mottling

Orange


Grey mottled orange


Orange mottled grey


Grey


Orange and grey mottled

Grey, blue and orange mottled

Multicoloured

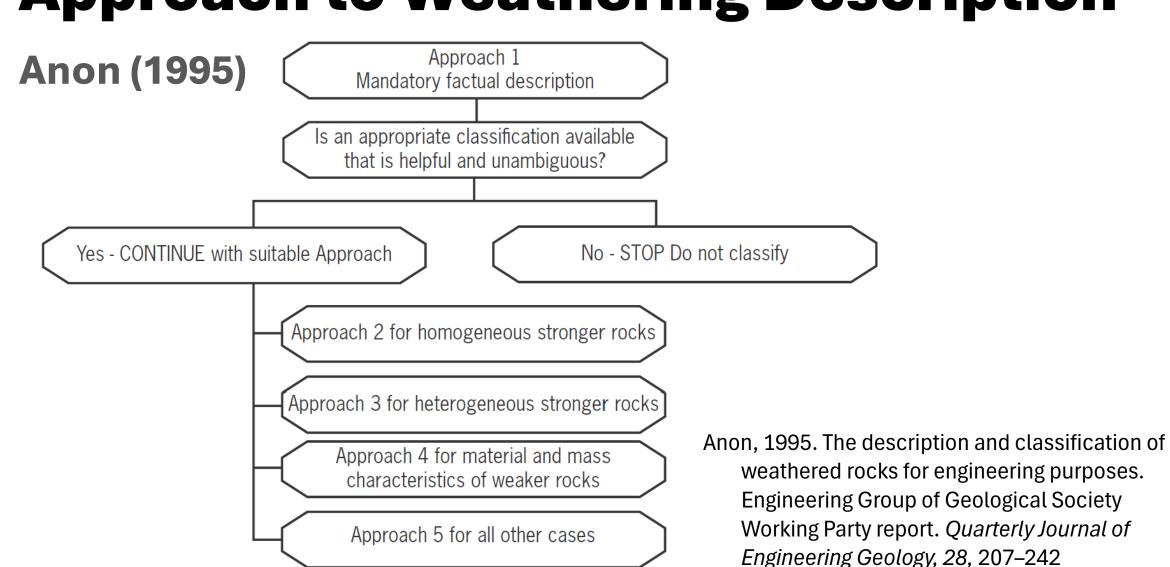
stained

orange (iron) **stained** bluish gray schist

https://www.researchgate.net/publication/347913147_Keynote_Lecture_The_Jettan_Rockslide-An_Engineering_Geological_Overview?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlljoiX2RpcmVjdCJ9fQ

https://richardigibson.substack.com/p/spotted-rocks

spotted


spotted orange sandstone

Grammar rules

```
[adj.] ป [adj.] ป [adj.] ป [noun]grayspottedreddishbrownshaleสีของ<br/>ลวดลายสีรอง<br/>สีรองสีหลัก<br/>สหลัก<br/>ลวดลาย
```

reddish brown (2.5YR 5/3) and gray (2.5Y 6/1) thinly colour-banded sandy CLAY

Approach to Weathering Description

Homogeneous Strong Rocks

Grade	Classifier	Typical characteristics
VI	Residual soil	Soil, retains none of original texture or fabric
V	Completely weathered	Considerably weakened
	•	Slakes
		Original texture apparent
IV	Highly weathered	Does not readily slake when dry sample is immersed in water
III	Moderately weathered	Considerably weakened, penetrative discolouration
II	Slightly weathered	Slight discolouration, weakening
I	Fresh	Unchanged from original state

Heterogeneous Strong Rocks

Zone	Proportions of material grades	Typical characteristics
6	100% G IV to VI (not necessarily all residual soil)	May behave as soil.
5	<30% G I–III >70% G IV–VI	Weak grades control behaviour. Corestones may be significant.
4	30–50% G I–III 50–70% G IV–VI	Rock framework contributes to strength; weathering products (matrix) control stiffness and permeability.
3	50–90% G I–III 10–50% G IV–VI	Rock framework controls strength and stiffness; matrix controls permeability.
2	>90% G I–III <10% G IV–VI	Weak materials along discontinuities affect shear strength, stiffness, permeability.
1	100% G I–III (not necessarily all fresh rock)	Behaves as rock.

Weak Rocks

Class	Classifier	Typical characteristics
E	Reworked or residual	Matrix with occasional altered random or 'apparent' lithorelicts, bedding destroyed. Classed as reworked when foreign inclusions are present as a result of transportation
D	Destructured	Greatly weakened, mottled, ordered lithorelicts in matrix becoming weakened and disordered, bedding disturbed
C	Distinctly weathered	Further weakened, much closer fracture spacing, grey reduction colours
В	Partially weathered	Slightly reduced strength, slightly closer fracture spacing, weather- ing penetrating in from fractures, brown oxidation colours
A	Unweathered	Original strength, colour and fracture spacing

Typical Weathering Features of Overconsolidated

Clayey Soil

Weathering class	Phy	ysic	al w	/ea	the	ring p	roce	esses			Observable effects			Chemical weathering processes	Observable effects
Reworked				desiccation cracks			apse Subhorizontal shearing by solifluction	Random accommodation shearing by solifluction	ntent and volume changes	foreign material	Solifluction shears	No original bedding	Increasing leaching	 Brown and light grey mottled clay Gypsum crystals rare or absent. 	
Destructured			cks	Modern desi		g by ollapse	Subhoriz		ed with	oisture co	Frequent randomly orientated lithorelicts		ncreas- urbed	Increasing reduction (gleying)	 Brown and light grey mottled clay Centre of relicts and fissure
		lensing	contraction cracks	Mod		High angle shearing by periglacial heave/collapse			s associato ical proce	Periodic moisture content	Numerous hori- zontally aligned lithorelicts Lensoidally fissured	r surfaces	Bedding increasingly disturbed		blocks brown Gypsum crystals common
Weathered	relief	Fissure formation by ice lensing	ical contra		cesses	High an periglaci		om gı	content and volume changes associated with srelief, periglacial and chemical processes	I	- Lensoldary rissared	Increasing likelihood of polished shear surfaces			 Brown clay with light grey gleying on fissures Gypsum crystals common
	y stress	format	Old subvertical		acial pro		-	rbance fr weatherir	d volun iglacial			of poli	turbed	Oxidation complete	Brown clay Gypsum crystals common
Partially weathered	Fissure formation by stress relief	Fissure	Olds		Deep shearing by periglacial processes			Fabric disturbance from chemical weathering	sture content and volun stress relief, periglacial		Fissure spacing decreasesIncreasing likelihood	likelihood	Bedding undisturbed	Increasing	Brown clay around fissuresCentre of fissure blocks greyOccasional gypsum crystals
	sure for				p shearin				Moisture co		of occasional slightly polished fissures	reasing l	Bedd	oxidation	 Grey clay with brown staining Rare gypsum crystals on fissures
Unweathered	Fis				Deej				Mo		Original fissured clay	Inc			Grey clay

Weathering Description Example Soils

- Firm to stiff lensoidally fissured and cracked brown mottled light grey CLAY. Lensoidal fissuring is extremely closely spaced (3/5/10). Contraction cracks are subvertical medium to closely spaced rough light grey gleyed. Occasional gypsum crystals (destructured LONDON CLAY)
- Stiff fissured brown mottled grey slightly sandy CLAY with occasional rounded gravel size lithorelicts of very weak mudstone. Fissures are randomly orientated very closely spaced (weathered CARBONIFEROUS MUDSTONE).

Weathering Description Example

Rocks

 Strong thinly bedded light and dark grey medium grained SANDSTONE (CARBONIFEROUS SANDSTONE).

Weathering:

discontinuities heavily stained black;

with light orange brown discolouration penetrating up to 30 mm;

slight loss of strength on discontinuity walls up to 10 mm penetration;

extremely closely spaced random fractures in 40 mm thick zones around joints;

occasional sand infill up to 0.5 mm in joints.

Fabric (Soil & Sedimentary rock)

Describes features of (or inside) the soil mass

(Noun)

Laminae

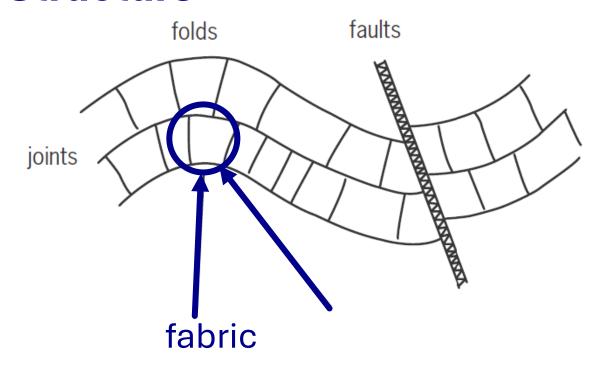
Lenses

Desiccation cracks

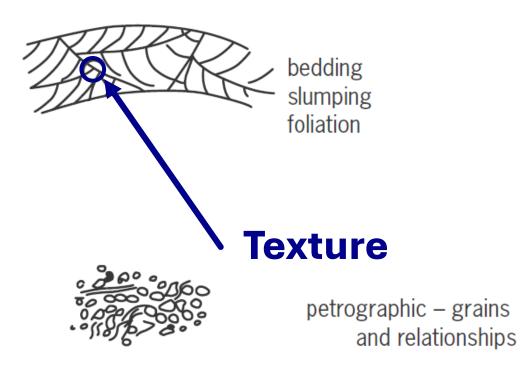
Lithorelics

Root tracks

Bioturbation


Cryoturbation

Size or Spacing


- CLAY with closely spaced lenses (5 by 10 to 15 by 20 mm) of peat
- CLAY with widely spaced thin laminae of sand
- MUDSTONE with closely spaced desiccation cracks (25/100/220)

Structure/Fabric/Texture Comparison

Structure

Fabric

Discontinuities (soil & rock)

Discontinuity Type (Noun)

Incipient fractures

Induced fractures

Cleavage

Cleavage fracture

Joints (for rock)

Fissures (for soil)

Shear surfaces

Faults

Description

orientation

spacing

persistence

termination

roughness

wall strength

aperture size

infilling

seepage

number of sets

Discontinuity Spacing

Typical thickness or spacing (mm)	Discontinuity term
over 2000	Very widely spaced
2000-600	Widely spaced
600-200	Medium spaced
200-60	Closely spaced
60-20	Very closely spaced
20-6	Extremely closely spaced
under 6 ¹	Extremely closely spaced

Discontinuities Example

- firm fissured and sheared CLAY. Fissures are generally subvertical very closely spaced. Shears are subhorizontal (175/05 to 200/10) up to 500 mm persistence smooth undulating straight striated highly polished.
- very closely jointed very thinly bedded SANDSTONE. Joints are undulating rough tight and clean.
- extremely closely sheared laminated MUDSTONE. Shears dip up to 5-10° planar smooth polished and lightly striated.
- fissures are randomly orientated very closely spaced

Boundaries (soil & rock)

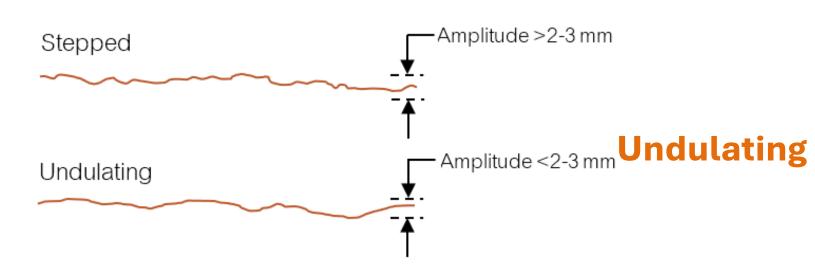
Boundary distinctness

Class	Boundary thickness	Term
1	<5	Sharp
2	5–25	Abrupt
3	25–60	Clear
4	60–130	Gradual
5	>130	Diffuse

Boundary form

Class	Description	Term
1	Boundary form is a plane with few or no irregularities and is usually at the same depth across the exposure.	Smooth
2	Boundary has broad, shallow, regular pockets.	Wavy
3	Boundary has pockets which are deeper than the width.	Irregular
4	At least one of the horizons is discontinuous and the boundary is interrupted.	Broken

Surface (3 Types) 32


Roughness

Amplitude (3 types)

-≅ 0.2 m -

Stepped

slickensided

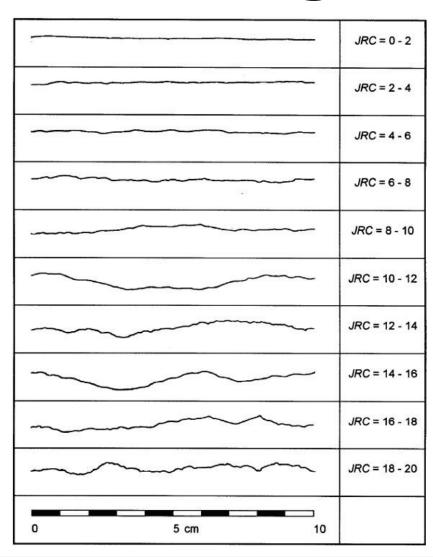
smooth

slickensided

Planar

Planar

smooth


slickensided

rough

rough

smooth

Joint Roughness Coefficient

Joint Filling

- 1. Non-existent
- 2. Surface staining
- 3. Non-cohesive
- 4. Clay
- 5. Cemented (cement type)
- 6. Chlorite, talc or gypsum
- 7. Others (specify)

Examples - Coarse Soils

Loose orangish brown gravelly fine to coarse SAND. Gravel is rounded fine and medium of quartz (RIVER TERRACE DEPOSIT)

Dense brown slightly sandy subrounded fine to coarse GRAVEL of various lithologies with low cobble content. Cobbles are subrounded of strong sandstone (FLUVIO GLACIAL DEPOSIT)

Medium dense brownish grey medium to coarse sandy slightly clayey subrounded fine GRAVEL of medium grained sandstone (GLACIAL TILL)

Examples - Coarse Soils

Grey and light grey very medium to coarse sandy subangular tabular fine and medium weak mudstone GRAVEL or Very sandy GRAVEL. Gravel is grey subangular tabular fine and medium of weak mudstone. Sand is light grey medium to coarse (RIVER CHANNEL/ WEATHERED BEDROCK?)

Examples – Fine Soils

Stiff reddish brown and greyish green slightly sandy gravelly CLAY with low cobble content. Gravel and cobbles are fine of siltstone (MERCIA MUD-STONE GROUP)

Firm very thinly bedded brown silty CLAY

Firm greyish brown SILT

Stiff dark bluish grey thickly laminated dark grey slightly fine sandy SILT. Colour changes to light grey quickly on drying (ESTUARINE DEPOSITS)

Soft thickly laminated grey CLAY with closely spaced thin laminae of grey fine sand with dustings of brown silt. Occasional pockets (up to 10 mm) of peat (ALLUVIUM)

Examples – Fine Soils

Very stiff fissured and sheared thinly bedded dark grey mottled orangish brown CLAY with frequent shell fragments. Fissures are generally subvertical very closely spaced smooth planar grey gleyed. Shears are subhorizontal (175/05 to 200/10) up to 500 mm persistence smooth undulating straight striated highly polished (Weathered LIAS CLAY)

Firm to stiff greyish brown slightly fine sandy slightly gravelly CLAY with occasional lenses (5 by 15 to 15 by 50 mm) of yellow silty sand. Gravel is subangular to subrounded fine and medium of various lithologies (GLACIAL TILL)

Examples – Materials at the soil/rock boundary

FINE

Very stiff to extremely weak fissured thickly laminated brownish grey and yellowish brown mottled CLAY/MUDSTONE. Fissures are generally subvertical very closely spaced smooth planar with low polish (Weathered LONDON CLAY)

COARSE

Light grey fine to medium SAND with occasional fine gravel size fragments of extremely weak light grey sandstone (D2 SHER-WOOD SANDSTONE)

Examples - Rocks

Strong thickly bedded brown medium grained dolomitic LIMESTONE (CADEBY FORMATION). Small but steady increase in strength with depth; colour mottled at top of stratum, effects due to weathering

Very weak to weak thickly laminated to thinly bedded light brown fine and medium grained micaceous SANDSTONE (partially weathered SHERWOOD SANDSTONE). No weathering effects apart from staining. Joints: dipping 45°, widely spaced, smooth planar stained

Grain SizeWentworth (1922)

Millimeters (mm)	Micrometers (μm)	Phi (φ)	Wentworth size class	
4096		-12.0	Boulder	
256 — -		-8.0 —	Graye — — — — — — — — — — — — — — — — — — —	
64 — -		-6.0 —		
4 -		-2.0 —	Granule	
2.00		-1.0 —	Very coarse sand	
1.00 —		0.0 —	Coarse sand	
1/2 0.50 —	500	1.0 —	Medium sand	
1/4 0.25 —	250	2.0 —	Fine sand	
1/8 0.125 —	125	3.0 —	Very fine sand	
1/16 0.0625	63 —	4.0 —	Coarse silt	
1/32 0.031 —	31	5.0 —	Medium silt	
1/64 0.0156 —	15.6	6.0 —	Fine silt	
1/128 0.0078 —	7.8	7.0 —	Very fine silt	
1/256 — 0.0039 — 0.00006	0.06	8.0 — 14.0	Clay	

Sedimentary Structures

bioturbations load casts

mudcracks imbrications

ripple marks geopetal structures

sole marks cross bedding

scour marks cross lamination

flute casts graded bedding (e.g. fining upwards,

groove casts coarsening upwards)

Igneous Rock Types and Textures

Intrusive

granite

diorite

gabbro

diabase

pegmatite

peridotite

Extrusive

rhyolite

andesite

basalt

dacite

obsidian

pumice

scoria

tuff

Texture

phaneritic

aphanitic

porphyritic

glassy

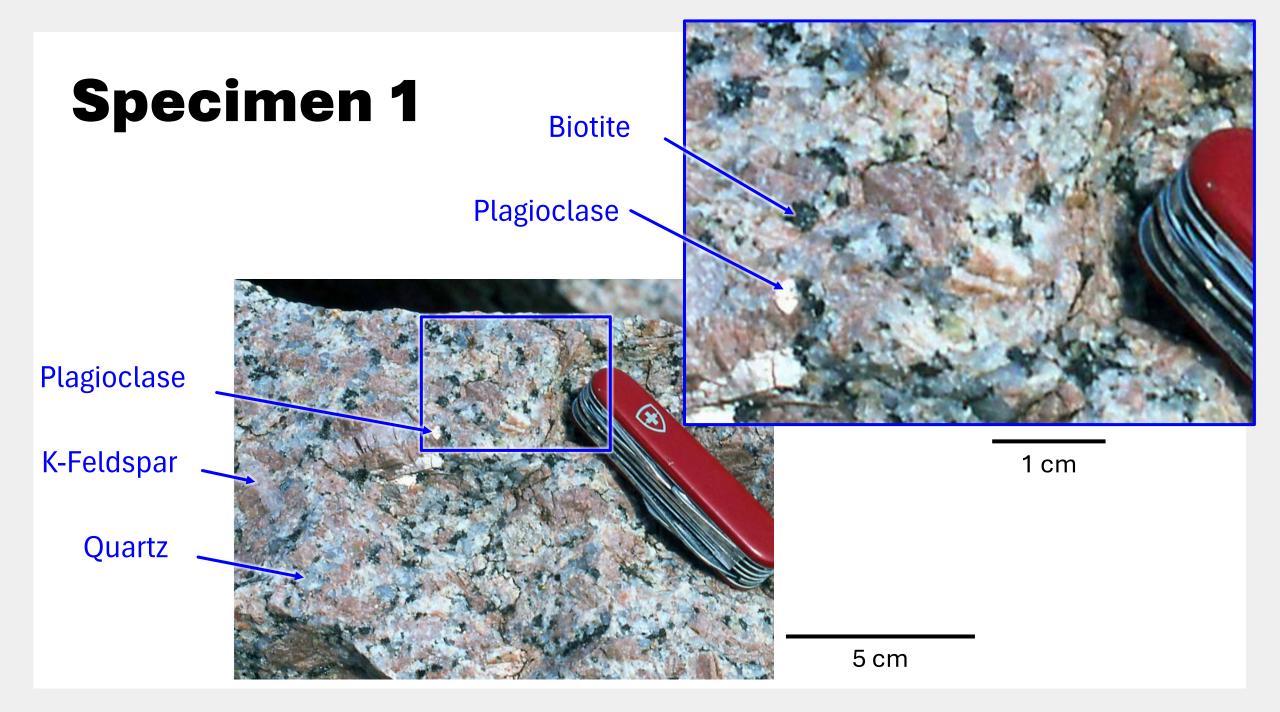
pyroclastic

pegmatitic

Metamorphic Rock Types

Rock Name		Texture		Grain Size	Comments	Parent Rock	
Slate	I n c	M e t	F		Very fine	Excellent rock cleavage, smooth dull surfaces	Shale, mudstone, or siltstone
Phyllite	r e a	a m o	0 		Fine	Breaks along wavey surfaces, glossy sheen	Slate
Schist	s i n g	r ph:	a t e d		Medium to Coarse	Micas dominate, scaly foliation	Phyllite
Gneiss		s m	ď		Medium to Coarse	Compositional banding due to segregation of minerals	Schist, granite, or volcanic rocks
Marb	le		N o n f		Medium to coarse	Interlocking calcite or dolomite grains	Limestone, dolostone
Quartzite		0 		Medium to coarse	Fused quartz grains, massive, very hard	Quartz sandstone	
Anthracite		a t e d		Fine	Shiny black organic rock that may exhibit conchoidal fracture	Bituminous coal	

Copyright © 2006 Pearson Prentice Hall, Inc.


Metamorphic Rock Texture

Foliated

Schistose texture
Gneissic texture

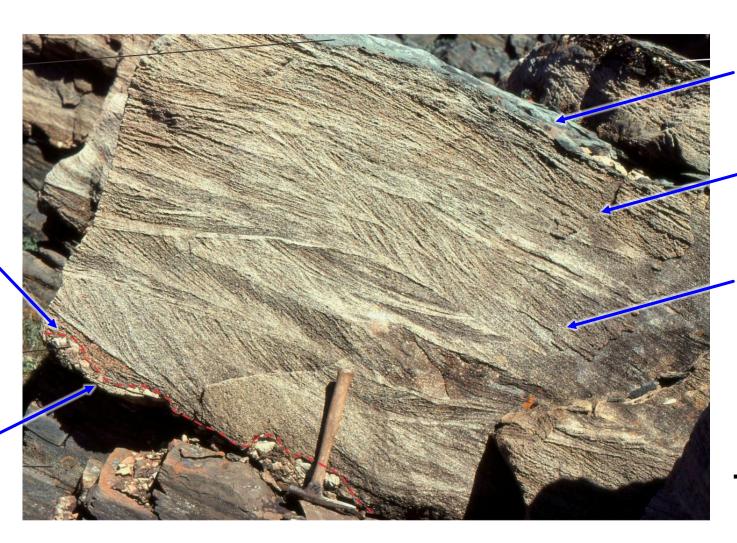
Non-foliated

Granoblastic texture
Hornfelsic texture
Cataclastic texture
Sugary texture

Specimen 2

Plagioclase

5 mm


5 cm

Specimen 3

sandstone matrix & mudstone clast:

angular

load cast

ripple marks

fine grained sandstone

trough crossbedding

30 cm

Specimen 4

Glossary

Cryoturbation	mixing of materials from different soil horizons due to freezing and thawing	
Gleyed	discoloration of soil due to permafrost	
Partings	horizontal discontinuities in soil (only the spacing is described)	
Fissures	tensile discontinuities in soil	