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1. Introduction

Tuberculosis (TB), caused by the airborne transmission of Mycobacterium
tuberculosis (Mtb), remains the most persistent and concerning infectious diseases, and is a
major global health crisis. With approximately 1.25 million deaths and 8.2 million new cases
reported in 2023 alone, its impact is undeniable (World Health Organization, 2023). A
primary obstacle to its control is a fundamental screening bottleneck that hinders effective
treatment and prevention. This challenge is compounded by the vast reservoir of latent TB
infection (LTBI), estimated by the World Health Organization (WHO), about one-quarter of
the global population is infected. LTBI are non-contagious, but if left untreated, 5-10% of
them will progress to active TB (ATB) during their lifetime and LTBI also requires distinct
clinical management from ATB (Comstock et al., 1974; Tuberculosis (TB), n.d.).

However, current diagnostics are full of limitations. Conventional methods for ATB,
such as sputum smear microscopy and culture, are slow and require significant laboratory
infrastructure, while molecular tests remain costly for widespread use (4). The primary
specimen for ATB diagnosis, sputum, can also be difficult to obtain from certain populations,
such as children and paucibacillary patients (5). For LTBI, a definitive gold standard is
absent; immunological assays cannot reliably differentiate LTBI from ATB or predict which
individuals will progress to disease, leaving clinicians without a clear path forward and
crippling public health efforts to halt transmission (6). Furthermore, current LTBI
diagnostics, such as interferon-gamma release assays (IGRAs), typically rely on venous
blood draws, which present logistical challenges for mass screening in community or remote
settings, variable sensitivity, poor reproducibility, and unknown prognostic value (7,8). The

limitations of these current diagnostic approaches are linked to the specimens they require.



The development of rapid, accurate, and accessible TB tests depends not only on new
analytical technology but also on its successful application to more patient-friendly and
minimally invasive sample types. The lack of a validated diagnostic platform for such
alternative specimens remains a significant barrier to realize Point-of-Care Testing (POCT)
and scalable mass screening strategies essential for achieving the WHO's End TB goals.

To overcome these challenges, vibrational spectroscopy has emerged as a powerful
candidate technology. Specifically, Surface-Enhanced Raman Spectroscopy (SERS) offers a
potential solution by capturing a unique ‘biomolecular fingerprint’ from a clinical sample. By
enhancing the inherently weak Raman signal from matrix complex biological specimens.
SERS provides a rapid, label-free analysis of the systemic biochemical changes caused by TB
(Chang et al., 2025; Fang et al., 2024). When coupled with machine learning algorithms
capable of discerning disease-specific patterns inside the data that are invisible to the human
eye, this approach holds the potential for a highly accurate screening tool (Fang et al., 2024;
Puravankara et al., 2024). There are studies that have demonstrated the promise of SERS for
identifying TB, cancers, and other infectious diseases like typhoid and dengue (Eiamchai et
al., 2024; Khalil et al., 2025; Lin et al., 2025). However, a critical knowledge gap persists: the
comparative utility of this technology across different, more accessible clinical specimens for
TB has not been systematically investigated.

While the combination of SERS and machine learning presents a promise for TB test,
its practical implementation depends on answering one key question: which clinical specimen
offers the optimal balance of accuracy, accessibility, and patient convenience? This thesis
confronts this obstacle directly by systematically evaluating the feasibility of using this
platform across a range of biofluids. The successful identification of a suitable alternative
specimen would be a critical step toward developing a field-deployable, point-of-care tool for
mass screening and effective TB control. Therefore, the primary aim of this research is to
systematically evaluate and compare the performance of venous plasma, venous serum,
fingertip serum, saliva, and tongue swabs for the differentiation of ATB, LTBI and HC

groups using SERS coupled with machine learning.

2. Objective
2.1. To establish the optimal venous blood matrix by comparing the diagnostic
performance of serum and plasma with SERS and machine learning to distinguish

between TB groups.



2.2. To evaluate the feasibility of point-of-care translation by comparing fingertip serum
to venous serum with SERS and machine learning to distinguish between TB groups.
2.3. To investigate the viability of screening by evaluating saliva and tongue swab

samples with SERS and machine learning to distinguish between TB groups.

3. Conceptual Framework
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Figure 1. Conceptual framework

From Error! Reference source not found. TB is the second most concerning
infectious disease globally, posing a significant health problem. The current lack of
widespread screening protocols, particularly in communities, and the invasive nature of
traditional venous blood collection for diagnosis are major challenges. This project aims to
address these issues by evaluating the feasibility of alternative specimens: less-invasive
(fingertip serum) and non-invasive (saliva and tongue swab) sample types, alongside
comparing the performance of venous serum to venous plasma by using SERS and machine
learning to develop improved TB screening protocols and tools. The goal is to enhance access
to treatment, improve public health, reduce healthcare costs, and promote economic well-

being, contributing to the "END TB" initiative.

4. Materials and methods

4.1. Overview and study design
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Figure 2. Study Design

This study aimed to evaluate and compare different biological sample types for
detecting tuberculosis infection using SERS and machine learning. A total of 195 participants
were divided into three groups: 65 active tuberculosis (ATB), 65 latent tuberculosis infection
(LTBI), and 65 healthy controls (HC). To achieve this, we will systematically evaluate the
efficacy of machine learning models trained on SERS spectra from different sample types:
venous serum, venous plasma, fingertip serum, saliva, and tongue. The ultimate objective is
to provide clear, data-driven guidance on the optimal specimen, balancing high performance
with clinical practicality and patient invasiveness for the potential development of a future

rapid SERS-based tool for TB screening.



Multiple biological specimens were collected, including venous serum, plasma,
fingertip serum, saliva, and tongue swabs. Serum, plasma, and fingertip serum were stored at
-80°C, while saliva and tongue swabs were preserved with formalin before storage.

4.2. Participants and setting

A total of 975 samples, including venous serum, venous plasma, fingertip serum,
saliva, and tongue swabs, will be collected from 65 active tuberculosis (ATB), 65 latent
tuberculosis infection (LTBI), and 65 healthy control (HC) participants at Srinagarind
Hospital, Khon Kean Hospital, Kalasin Hospital, Mahasarakham Hospital, Roiet Hospital,
and Chum Phae Hospital, Thailand.

Medical records information will be collected from participants. All participants'
blood will be sent to the Office of Disease Prevention and Control, Provincial Agencies 7 for
LTBI, and National Healthcare Systems Company Limited (N Health) for ATB and HC to
test and obtain IGRA results.

Table 1. The inclusion and exclusion criteria of each group are in the table below.

Criteria Inclusion Exclusion
ATB * Age 18-70 years. * Pregnancy.
¢ Chronic cough for at least 2 weeks, or hemoptysis, or | « Confirmed NTM or
fever, loss of appetite, and unexplained weight loss. other lung infections.
* Positive molecular test for TB (e.g., GeneXpert), * Negative molecular
regardless of AFB smear result. test for TB and negative
* Treatment duration within 0-14 days culture for MTB.
* Abnormal CXR * HIV infection
LTBI * Age 18-70 years. * Pregnancy.
* History of household contact or being a healthcare * Confirmed NTM or
worker. other lung infections.
* No history of having ATB. * HIV infection

* Living with TB patients >15 hours per week or >180
hours during the 3 months before.

* Positive IGRA and/or TST result.

* Normal CXR < 1 month before.

HC * Age 18-70 years.
* A healthy individual with no prior history of ATB.




* No history of close contact with TB patients.
* Negative IGRA and/or TST result.
* Normal CXR < 1 month before.

4.3. Sample collection and storage

The specimens will be placed on ice and transported to the laboratory within 6 hours.

The heparinized blood and clotted blood will be centrifuged at 3500 rpm for 10
minutes to separate plasma and serum, respectively. They will then be aliquoted and stored at
-80°C.

For saliva, participants will first be instructed to rinse their mouths. After 15 minutes,
they will passively drool saliva in their mouths for 1 minute before allowing 3-5 mL of saliva
to flow into a designated sterile collection container. To prevent bacterial growth after
collection, 5 mL of 0.5% formalin will be added. Finally, the sample will be transferred into a
cryotube and stored at -80°C.

For tongue swabs, use a sterile flocked swab to firmly press the dorsal surface of the
tongue for 5 seconds, then swab from left to right 3 times. The swab will be placed into a
sterile tube containing 3 ml of 0.1% formalin to prevent bacteria from growing. The
preservative 3 mL of 0.1% formalin will be added to the solution; the swab will be discarded
after mixing, and the solution will then be stored at -80°C.

4.4. Optimization of preprocessing step of serum and plasma dilution

To identify the ideal analyte concentration for SERS analysis, venous serum and
venous plasma of healthy control group from 20 pooled sample were prepared across a range
of dilutions, with dilution factors varying from 1:25 to 1:800. This optimization is critical as
SERS intensity is highly dependent on analyte concentration at the nanoparticle surface,
where overly concentrated samples can lead to signal quenching and overly dilute samples
yield insufficient signals. Following this comprehensive analysis, the dilution factor that
provided the best balance of high intensity, consistency, and reliability was selected. This
optimized dilution factor, determined for venous serum, was subsequently applied to fingertip
serum samples, assuming comparable proteomic and metabolomic concentrations.

4.5. Data visualization

All SERS spectra obtained from the confocal Raman spectroscopic microscope was

conducted in a structured pipeline designed to extract meaningful biological insights and

build robust classification models. The workflow was executed by using the Python




programming language (version 3.9 or higher). Key scientific libraries that will be employed
include Scikit-learn for machine learning and model validation, Pandas and NumPy for data
manipulation, SciPy for statistical analyses, Raman Spy for preprocessing, and Matplotlib
and Seaborn for data visualization.

Upon the importation, all SERS spectra was preprocessed by using the optimized
pipeline established in Section 3.2.5.3. Following preprocessing, the reproducibility of the
data will be quantitatively confirmed by calculating RSD across spectra within the sample
and across all samples within the same group. PCA and UMAP were used for visualization of

the clustering and differentiating of the inherent structure of the data.

5. Results and Conclusion

The optimization of sample concentration is a critical prerequisite for quantitative
Surface-Enhanced Raman Scattering (SERS) analysis, as it directly influences signal stability
and measurement repeatability. As illustrated in Figures 3 and 4, the SERS spectra of serum
and plasma derived from healthy controls were acquired across a gradient of concentrations.
The spectral profiles of serum and plasma appeared remarkably similar, reflecting their
overlapping biochemical compositions, primarily differing in the presence of clotting factors
such as fibrinogen in plasma (Baker et al., 2014).

To quantitatively assess the reproducibility of the SERS signal across different
dilution factors, the peak intensity at 1003 cm™ was selected as the reference marker. This
vibrational mode, predominantly attributed to the ring-breathing of phenylalanine, is
consistently reported as the most intense and distinct feature in biofluid SERS spectra,
making it an ideal candidate for normalization and stability calculations (Bonnier & Byrne,
2011; Feng et al., 2010).

The Relative Standard Deviation (RSD) of the peak intensity at 1003 cm™ was
calculated to measure precision. As depicted in Figure 5, the data reveals a non-linear
relationship between concentration and signal stability. Specifically, samples prepared at a
100-fold dilution (1:100) exhibited the lowest %RSD values for both serum and plasma
compared to other dilution ratios. This suggests that at this specific concentration, the
adsorption kinetics of bio-analytes onto the silver SERS substrate is suitable for dispersion
and thickness of biofluid (Lu et al., 2023).

This finding is further corroborated by statistical variance analysis. A box plot

distribution of average spectral intensities across the full wavelength range demonstrates that



the 1:100 dilution factor yields the narrowest interquartile range and the lowest standard
deviation. This reduction in variance indicates a significant enhancement in the intra-assay
reproducibility of the SERS spectra at this operational concentration.

Furthermore, multivariate analysis via Principal Component Analysis (PCA) provides
a visualization of spectral consistency. As shown in Figures 7 and 8, the PCA score plots
reveal distinct clustering behaviors associated with different dilution factors. The scores
corresponding to the 100-fold dilution are the most tightly clustered, exhibiting minimal
dispersion along the principal component axes. In chemometrics, tight clustering in PCA
space is definitive evidence of high spectral homogeneity and low experimental
variance(Jolliffe & Cadima, 2016; Stiles et al., 2008).

Collectively, the convergence of evidence from specific peak kinetics (1003 cm™
RSD), global intensity variance (box plots), and multivariate clustering (PCA) establishes the
1:100 dilution as the optimal operational parameter. High spectral reproducibility and
consistency are paramount for diagnostic reliability; ensuring that spectral differences are
attributable to biological variation rather than technical artifacts is essential for the valid

clinical application of SERS technology.
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Figure 3 SERS spectra of serum samples with different dilutions (25, 50, 100, 200, 400, 800)
obtained under 785 nm laser wavelength excitation.
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Figure 4. SERS spectra of plasma samples with different dilutions (25, 50, 100, 200, 400,
800) obtained under 785 nm laser wavelength excitation.
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Figure S. %RSD of plasma and serum at different concentrations.
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Figure 6. Box plot of average intensity of plasma (left) and serum (right) at different

concentrations.
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Figure 7 PCA of serum samples with different dilutions (25, 50, 100, 200, 400, 800) obtained
under 785 nm laser wavelength excitation.
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Figure 8 PCA of plasma samples with different dilutions (25, 50, 100, 200, 400, 800)
obtained under 785 nm laser wavelength excitation.
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