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1. Introduction

Emerging infectious diseases (EIDs) can be described as infections that are recently
recognized or increased in population in a new area. EIDs are a serious threat to global health and
an economic burden (Taylor et al., 2001). 75% of EIDs are zoonoses or zoonotic diseases, which
originate from pathogens in animals and transmit to humans (Gebreyes et al., 2014). The majority
of zoonotic diseases are caused by the zoonotic spillover viruses to humans (Kreuder Johnson et
al., 2015). Zoonotic spillover can be defined as the cross-species transmission of pathogens from
wild animals to humans. The potential of zoonotic spillover can be determined by interactions
among several factors including disease dynamics in the reservoir host, pathogen exposure, and
the within-human factors that affect susceptibility to infections. Moreover, key factors determining
spillover potential include cellular and tissue tropism, virulence and characteristics of the
pathogen, and the ability of the pathogen to adapt and evolve within a novel host environment
(Escudero-Pérez et al., 2023).

Bats are important reservoir hosts of many zoonotic viruses that can infect humans and
other domestic or wild mammals. Bats belong to the order Chiroptera. Bats are around 20% of all
living mammals, with more than 1,300 species, and are found worldwide except in extreme polar
regions (Wilson & Reeder, 2005). Bats are the only mammals that can truly fly because of their
adaptations in anatomy and physiology including their elongated fingers with stretched skin, strong
flight muscles, flexible wings, lightweight skeleton, and a high metabolic rate (Teeling, 2009).
Bats are natural reservoirs host for several spillover viruses to humans including the Nipah virus,
Hendra virus, Ebola virus, Pandemic avian influenzas, West Nile virus, and some coronavirus such

as severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome



coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(Han et al., 2015). A broad-scale conclusion from metagenomic studies showed that bats may be
particularly prone to carry viral families commonly associated with zoonotic disease. Of the more
than 16,600 bat-associated viral sequences on NCBI/GenBank, 30% are the families Coronaviridae
(Van Brussel & Holmes, 2022).

In the past two decades, coronaviruses have been associated with human emergence. The
Coronaviruses are subdivided into four genera. The genus Alphacoronavirus (o) contains the
human coronavirus 229E (HCoV-229E), one other human coronavirus NL63 (HCoV-NL63), and
many animal viruses. The genus Betacoronavirus (3) includes the prototype mouse hepatitis virus
(MHV), the three human coronavirus including human coronavirus OC43 (HCoV-0OC43), SARS-
CoV, and human coronavirus HKU1 (HCoV-HKUI), and MERS-CoV, together with several
animal coronaviruses. The genus Gammacoronavirus (y) contains viruses of cetaceans (whales)
and birds, and the genus Deltacoronavirus (8) contains viruses isolated from pigs and birds (Burrell
et al.,, 2016). Three major outbreaks of coronaviruses: SARS-CoV and MERS-CoV caused
significant human morbidity and mortality in 2002 and 2012 respectively and most recently, the
SARS-CoV-2 caused coronavirus disease 2019 (COVID-19) pandemic in 2019 that has caused
millions of cases and deaths (Pustake et al., 2022). Moreover, most of the virus spillover risk
ranking of the top 50 wildlife viruses, including viruses known to be zoonotic and those with
unknown zoonotic potential are coronaviruses (Grange et al., 2021). The associated costs of these
preventive efforts would be substantially less than the economic and mortality costs of responding
to these pathogens once they have emerged. Thus, efforts to increase preparedness and improve
surveillance for emerging coronaviruses represent a priority for global health programs (Bernstein
et al., 2022). Common receptor usage and the ability of viruses to enter and replicate in human
cells are major factors linked to spillover potential. To assess the spillover potential of
coronaviruses, human proteins or receptors that have the potential to support zoonotic spillover
(restriction factors, receptors, other cellular proteins) are necessary to identify and determine
whether those are few or many (Escudero-Pérez et al., 2023).

This study aims to develop a platform for assessing the spillover potential of coronaviruses
by investigating common receptor usage of coronaviruses among animal hosts and humans. And

analyze the virome profile in bats in Thailand and assess the spillover potential of identified



coronaviruses in bats. This is important for pandemic preparedness and improve surveillance to

prevent future coronavirus spillover.

2. Hypothesis
1. Bats in Thailand are reservoirs of many zoonotic viruses including coronavirus

2. Coronaviruses identified from bats in Thailand are capable of spillover to humans

3. Objectives
1. To analyze virome profile in bats in Thailand
2. To develop a platform for assessing the spillover potential of coronaviruses
2.1.  To investigate potential receptors of coronaviruses that are shared among animal
hosts and human
2.2.  To construct potential receptor-expressing cell lines and pseudovirus
3. To investigate the spillover potential of identified coronaviruses from bats in Thailand

using the developed platform

4. Scope and limitation
According to the plan and budget, the bat samples in the study are collected in three
different shedding routes from two provinces, including Chanthaburi and Chiang-rai. The
receptors for assessing spillover potential are selected and constructed based on the available
database.

5. Anticipated outcome

1. Knowledge of common receptor usage of coronaviruses shared among animal
hosts and human

2. List of viruses in bats in Thailand

3. Diversity of the identified coronaviruses in bats in Thailand

4. List of potential spillover coronaviruses from bat to human



6. Conceptual framework
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Figure 1. Conceptual framework

Table 1. Detail of conceptual framework

Step Detail

The problems of this study are the bats virome profiles in

Thailand remain limited and there are possibility of coronavirus to

Problems transmit to humans. Moreover, the knowledge of receptor usage of
coronavirus which is the key factor of virus spillover remains

limited.

To fix the problems metagenomic analysis will be used to
analyze the virome profiles of bats in Thailand. Then, the
Process coronavirus receptor usage will be retrived and investigate
potential receptor and developed platform that will be used to

analyze the potential coronavirus spillover.

1.1.  Receptor usage knowledge of coronavirus
Output  1.2.  The virome profiles of bats in Thailand

1.3.  The platform for assesment of coronavirus spillover potential

1. Knowledge of common receptor usage of coronaviruses
Outcome . ) ) ) ]
2. List of viruses in bats in Thailand




3. Diversity of the identified coronaviruses in bat

4. List of potential coronaviruses spillover

Virome profile in bat and list of coronavirus that have potential
spillover will be used for pandemic prepareness and for
Impact ] ) ) '
improvement of the surveillance leading to the prevention of

coronavirus spillover in the future.
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Figure 2. Experimental design

As shown in the flowchart, the experimental design was subdivided into four parts,
including Part 1 Investigation of potential coronavirus receptors, Part 2 Pseudovirus entry assay
development, Part 3 Bat virome analysis by metagenomic analysis, and Part 4 Spillover Potential

Assessment.



8. Previous progression

The Random Forest Classifier can effectively predict the human infection potential of
coronaviruses based on spike protein sequences. Through extensive cross-validation and external
validation, the Random Forest Classifier consistently achieved excellent predictive performance
across all key metrics, confirming its generalizability and reliability. SHAP-based feature
importance analysis further identified specific k-mer trimers, including LEP and KIQ, as strongly
associated with human infection and mapped to the N-terminal domain (NTD) and HR1 regions
of the S protein. Based on these findings, we focused on the potential role of the NTD in mediating
human infection. Notably, the NTD has been reported to interact with AXL, an alternative receptor
that enables ACE2-independent SARS-CoV-2 entry, suggesting that the NTD may contribute to
coronavirus spillover through AXL-mediated pathways.

9. Materials and Methods

To assess the AXL-binding potential of coronaviruses, key residues involved in the AXL—
SARS-CoV-2 spike interaction were identified through a literature review (Lei et al., 2023; Wang
et al., 2021). Total 5391 complete spike protein sequences of coronaviruses, excluding SARS-
CoV-2, were retrieved from the NCBI Virus database. Each sequence was then pairwise aligned
to the SARS-CoV-2 spike protein using PairwiseAligner, and the corresponding key AXL-
interaction residues were extracted to identify coronaviruses with potential AXL-binding
capability. Selected coronaviruses were subsequently used to construct a phylogenetic tree based
on whole-genome nucleotide sequences using MAFFT for multiple sequence alignment and 1Q-
TREE for phylogenetic construction with 1000 bootstrap. In addition, cophylogenetic analyses
were performed using the RdRp and spike protein sequences to compare their evolutionary
histories. Similarity plot analysis was conducted to examine sequence similarity patterns across
the spike gene using SimPlot. Finally, spike protein structures of the selected coronaviruses were
modeled using SWISS-MODEL, and protein—protein docking against the human AXL receptor
was performed using the HADDOCK server.



10. Results
1. Key residue of AXL-SARS-CoV-2 interaction
Table2. Key residue of AXL-SARS-CoV-2 interaction

AXL SARS-CoV-2 NTD Interaction types
E70 K147

E70 K150

168 K150

H61 S247 Hydrogen bond
E59 S247

E59 R246

E85 S256

P57 W152

P57 P251

P58 W152

el P23l Hydrophobic
168 W152

168 P251

F113 W152

F113 P251

2. Key residue identity relative to SARS-CoV-2 of coronaviruses

From a total of 5,391 complete spike protein sequences, the key residue identities relative
to SARS-CoV-2 for the top 50 coronaviruses with AXL-binding potential are shown in Figure 3,
together with the percentage of conserved key residues and overall sequence identity. The result
shown eleven coronaviruses exhibited complete conservation of key residues across all analyzed
positions. However, only nine of this also showed high overall sequence identity. In contrast, two
coronaviruses displayed low overall sequence identity while retaining identical key residues.

Therefore, these eleven coronaviruses were selected for further analyses.
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Figure 3. Key residue identity relative to SARS-CoV-2 of coronaviruses alongside with the

percentage of conserved key residues and overall sequence identity.

3. Phylogenetic tree of selected coronavirus based on whole genome

To examine the evolutionary relationships of coronaviruses with AXL-binding potential, a
phylogenetic tree was constructed based on whole-genome nucleotide sequences. The analysis
shows that the coronaviruses are clearly separated into the four established genera including
Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus, indicating that the
tree topology is consistent with current coronavirus taxonomy. The nine coronaviruses with high
overall spike sequence identity cluster within the Betacoronavirus genus, including pangolin

coronaviruses, bat coronaviruses, horseshoe bat sarbecovirus, and bat coronavirus RaTG13, group



closely with SARS-CoV-2, forming a well-supported clade. In contrast, the two coronaviruses
with low overall sequence identity, bat coronavirus PaGX17 and PaGZ19, cluster within the

Alphacoronavirus clade (Figure 4).
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Figure 4. Phylogenetic tree of selected coronavirus based on whole genome. Selected

coronaviruses were label as red color.

4. Cophylogenetic analysis using the RdRp and Spike protein

To evaluate the evolutionary concordance between conserved genomic regions and the
receptor binding protein of virus, a cophylogenetic analysis was performed using phylogenetic
trees constructed from the RARp gene and the spike protein. The analysis shows that coronaviruses
are broadly separated into the four established genera including alphacoronavirus,
betacoronavirus, gammacoronavirus, and deltacoronavirus in RdRp tree, indicating overall

consistency in evolutionary relationships. However, the spike-based tree shows greater topological



rearrangements, particularly within alphacoronavirus that separate into two clade, reflecting
increased evolutionary plasticity of the spike protein. Several coronaviruses maintain similar
positions in both trees, suggesting congruent evolutionary histories for RdRp and spike. In
contrast, other viruses display discordant placements between the two trees, indicating differential
evolutionary pressures acting on the spike protein relative to the conserved RdRp gene. Among
the coronaviruses of interest, pangolin coronaviruses, bat coronaviruses, the horseshoe bat
sarbecovirus, and bat coronavirus RaTG13 consistently cluster within the Betacoronavirus genus
in both trees and remain closely associated with SARS-CoV-2, indicating broadly concordant
evolutionary histories at both the genomic and spike levels. This consistency supports their close
evolutionary relationships and high overall genomic similarity. In contrast, bat coronavirus
PaGX17 and PaGZ19 cluster within the Alphacoronavirus genus in both trees and are clearly
separated from the Betacoronavirus clade. Therefore, only nine coronavirus consistently cluster

with SARS-CoV-2 were subsequenly selected for furture analysis.
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Figure 5. Cophylogenetic analysis using the RdRp (Left) and Spike protein (Right). The selected

coronaviruses were indicated in the red box.



S. Similarity plot analysis

To examine sequence similarity patterns across the spike protein, a similarity plot analysis
was performed comparing selected coronaviruses against SARS-CoV-2. The results reveal region-
specific divergence patterns, with the most pronounced variability observed in the early N-terminal
domain (NTD) and the receptor-binding domain (RBD). SARS-CoV-2 shows consistently higher
sequence similarity to bat coronavirus and horseshoe bat sarbecovirus across most of the spike
gene, whereas bat coronavirus RaTG13 exhibits reduced similarity within the RBD. Pangolin
coronaviruses display moderate to high overall similarity to SARS-CoV-2 across much of the spike
protein but show reduced similarity in the early NTD, followed by relatively stable similarity of
approximately 90% across the reported AXL-binding region. This is followed by a marked
decrease in similarity within the RBD and increased similarity in parts of the S2 subunit. Overall,
the high sequence similarity observed at reported AXL-binding positions suggests that these

viruses may retain structural features interactinge with AXL receptor.
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Figure 6. Similarity plot analysis



6. Molecular docking

To evaluate whether spike proteins from selected coronaviruses exhibit AXL-binding
potential comparable to SARS-CoV-2, molecular docking analysis was performed using
HADDOCK server. The results show that among the animal coronaviruses, the bat coronavirus
(UAY13217.1) exhibits a HADDOCK score (-113.6) close to that of SARS-CoV-2 (-118.0),
together with a low RMSD (1.6 A), comparable van der Waals energy, and a similar buried surface
area. Followed by horseshoe bat sarbecovirus (WLJ60537.1) with HADDOCK scores -107.8. Bat
coronavirus RaTG13 also shows a similar interaction (-106.5), but with higher RMSD values,
suggesting greater conformational variability in the docking solutions. Pangolin coronaviruses
display a broader range of HADDOCK scores (-92.1 to -107.3). Several pangolin coronavirus
spike proteins show interaction energies and buried surface areas comparable to SARS-CoV-2, but
generally exhibit higher RMSD values. Overall, bat and pangolin coronaviruses demonstrate
comparable docking result to SARS-CoV-2, supporting the potential of these coronavirus to bind
with AXL receptor (Table 3).

Based on these findings, bat coronavirus UAY 13217.1 was selected for detailed structural
analysis. The bat coronavirus-AXL interaction was visualized and analyzed using ChimeraX. The
results show a well-defined binding interface between human AXL (chain A, blue) and the spike
protein of the bat coronavirus (chain B, pink), with interactions predominantly involving residues
within the N-terminal domain (NTD). Interface analysis identified multiple hydrogen bonds that
contribute to stabilization of the complex. Several polar and charged AXL residues, including
GLUS59, ARG64, GLN67, GLU70, and LEU71, form hydrogen bonds with NTD residues of the
spike protein. Notably, GLU59 forms hydrogen bonds with HIS134 and ARG135 at short distances
(1.7-2.9 A), consistent with strong electrostatic interactions. In addition, ARG64 and GLN67
interact with ASP241 and SER243, while GLU70 forms hydrogen bonds with ARG234, THR238,
and GLY245, and LEU71 interacts with GLY?240. Importantly, key AXL residues involved in this
interaction, including GLU59 and GLU70, overlap with residues previously reported in SARS-
CoV AXL binding (Fang et al., 2023; Lei et al., 2023; Wang et al., 2021). Collectively, these
interactions support the presence of a stable AXL-NTD binding interface in the bat coronavirus
model, suggesting potential compatibility of this spike protein with the human AXL receptor
(Table 4, Figure 7)



Table 3. The result of molecular docking analysis

coronavirus

RMSD from
the overall Van Buried
. Virus HADDOCK Cluster der Electrostatic Desolvation Restraints Z-
Accession . lowest- surface
name score size waals energy energy energy score
energy area
energy
structure
YP 009724390.1 SARS-CoV-2  -118.0 28 1.1 61.6 3493 2.3 111.4 18603 23
UAY13217.1 Bat -113.6 11 1.6 61.9 2575 -10.7 104.9 1766.5  -18
coronavirus
Horseshoe
WLJ60537.1 bat -107.8 14 0.8 55.6 239.6 -11.8 76.4 16460  -12
sarbecovirus
Bat
QHR63300.2  coronavirus -106.5 47 9.2 -60.7 213.4 -13.3 101.8 1691.6  -12
RaTG13
QIA48632.1 Pangolin 99.5 16 19.8 524 257.6 4.4 87.3 1927.1 1.5
coronavirus
QIA48614.]  Fangolin 92.1 17 19.7 -49.0 282.1 53 80.0 16104  -15
coronavirus
QIA48641.1  Fangolin -107.3 17 0.7 -58.0 -250.1 6.2 69.6 1910.7  -1.9
coronavirus
QVT76606.1 Pangolin -104.3 10 20.4 522 2912 22 83.2 1907.1 1.7
coronavirus
QIA48623.1 Pangolin -105.3 33 0.9 -56.1 204.6 172 89.1 1545.1 1.8
coronavirus
QIQs4048.1  Fangolin -102.0 30 21.4 433 307.7 9.4 122.4 15426  -1.6




Table 4. The structural analysis of bat coronavirus-AXL interaction

AXL residue NTD residue VDW
(A: Blue) Atom (B: Pink) Atom Overlap Distance ()

GLUS59 HN HIS134 ND1 0.687 1.953
GLU59 N HIS134 ND1 0.338 2.927
GLU59 OE2 ARG135 HN 0.375 1.705
GLU59 OE2 ARG135 N 0.054 2.651
ARG64 NH1 ASP241 OD1 0.04 2.665
GLN67 HE21 ASP241 O 0.28 1.8

GLN67 NE2 ASP241 O 0.031 2.674
GLN67 NE2 SER243 HN 0.034 2.591
GLU70 OE2 ARG234 HE 0.315 1.765
GLU70 OE2 ARG234 HH22 0.078 2.002
GLU70 OEl THR238 HG1 0.255 1.825
GLU70 OEl GLY245 O 0.069 2.891
LEU71 HN GLY240 O 0.049 2.031

GLN78 CD ASNI136 HD21 0.016 2.684




Overlap: 20

* Distance: <3

» Ignore contacts between atoms
separated by 4 bonds or less

« Detect intra-residue contacts: False

* Detect intra-molecule contacts: False

Figure 7. The structural analysis of bat coronavirus-AXL interaction



11. Thesis plan
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