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Introduction: Senescence

➢ Senescence
Aging process on a cellular level. 

Microscopic changes on our cells throughout our lifetime.
Senescence occurs on

ALL CELLS!
➢ Immunosenescence (Immune+Senescence)
Age-related changes in the immune system

“WHO recognize ageing at the biological level can lead to gradual decrease in physical and mental capacity, increasing risk of disease and death.”

➢ Classification of aging (Immunology): 65 Years Old

Source: World Population Ageing 2023 (United Nations)
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LDC: Least Developed Countries; ODC: Other Developing Countries



Introduction: Immunosenescence

Effects of Immunosenescence?

Immune response 
reduction

Cell proliferation failure

Increased infection susceptibility

Accelerate disease development & 
progression

Lingering low grade 
inflammation

Spread of SASP protein to the 
normal structure and function of 

surrounding cells and tissues

*SASP: senescence-associated secretory phenotypes

➢ Senescence on innate immune 
system:

• NK cells: Increase number CD56dim cells, reduced 

cytotoxicity, level of cytokines and chemokines reduced.

• Monocytes: Increase of absolute numbers, decrease in Toll-

like Receptor (TLR) activation

➢ Senescence on adaptive 
immune system

• B cell: Decrease of antibody secretion capability

• T cell: defects in proliferation and effector functions
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Introduction: Pathogenic & Immunosenescent Cells

➢ What is this cells?
• Aberrent phenotype & functions

• Change in functions

❖ CD4+CD28-NKG2D+ T cells 

(Pathogenic)

• High IL-17 producing, associated type 2 

diabetes mellitus (T2DM) (Phoksawat et al., 

2017)

• High IL-17 & IFN-γ producing, expanded in 

elderly (Phoksawat et al., 2020; Sornkayasit et 

al., 2021)

❖ CD4+CD57+ (high) CD28−T cells 

(Senescent)

• Associated with cardiovascular disease risk factors 

(Sornkayasit et al., 2025)

❖ CD39+CD8+ T cells (Pathogenic)

❖ Associated with Crohn’s disease (Bai et al., 2015)

❖ PD-1 expressing, CD8+ T cells specific for HCV or 

HIV (Gupta et al., 2015)
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• Progression into disease

• Immunosenescence



Introduction: Biomarker & Technology to Senescence Detection

Raman/SERS approach:
• Raman spectra follows sample 

composition
• Minimum sample preparation
• Specificity & Sensitivity: Fingerprint
• Versatile sample type

BD Biosciences

Raman Spectroscopy (Bruker, Edinburth Instruments)

Flow Cytometry:
• Directly measurement of 

expressing senescence markers

Limitations:
• Expertise
• Subjective analysis (gating)
• Cost & accessibility Bruker

FTIR:
• Label-free, non-destructive, to 

observe biochemical changes

Limitations:
• Water interference
• Poor spatial resolution

Biomarker?

Source: https://www.nature.com/articles/s41392-023-01451-2#Sec2
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Introduction: Raman/SERS Application

➢ Agriculture ➢ Pharmaceuticals

➢ Art & Archaeology ➢ Medical Field

Immunosenescence? Pathogenic cells? 

Pesticides residues Chemical Additives: Dye Melamine in dairy Identify components Stability Purity & Uniformity

Pigment & material 
identification

Degradation Material analysis Biopsy: cancer Pathogen Neurological diseases
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Seminar Papers

Paper 1:

Paper 2:
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Inappropriate T helper subset differentiation

Increase in regulatory T cells

Diminished proliferative capacity

Age-Related

Paper 1: Overview Th Cells (CD4+)

Th Cells, CD4+:

• Activated by antigen recognition by MHC Class II molecule

• Coordinating immune response:

⚬ Cytokine secretion

• Develop long-lived memory cells

T cell dysfunction: 

Progression of disease

Importance for Early Detection

Th cells as “conductor”
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Paper 1: Overview

Conditions observed in this study:

(Pathogenic CD4+ T-cells)
• CD28-
• NKG2D+
• High IL-17 producing cell 

Objective:

• To discriminate the elderly groups with a low 

percentage and a high percentage of pathogenic CD4+ T 

cells by using machine learning-empowered ATR-FTIR.

• To investigate biochemical changes in serum, exosome, 

and HDL samples

High percentage (HP): ≥6% 

Low percentage (LP): ≤3%

Sample size: 21LP & 22HP
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Paper 1: Materials and Methods
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Result: Biomolecular Content Study by Spectral Band Area Analysis

ATR spectra collected and compared:

• 3000–2800cm-1 (lipid)

• 1700–1500cm-1 (protein)

• 1270–960cm-1 (nucleic acid)

→ Exosome: 

Lipid and nucleic acid contents inthe HP group were significantly higher than inthe LP 

group (p<0.001 and p<0.01)

→HDL:

 Protein contents was significantly different between the HP and LP groups (p<0.05)

Figure 1. Results of spectral band area analysis of serum, exosome, and HDL spectra. Representative spectra from serum 
(blue), exosome (red), and HDL (green). Regions selected for the spectral band area analysis were 3000–2800 cm−1 lipid 
(orange region), 1700–1500 cm−1 protein (green region), and 1270–960 cm−1 nucleic acid (blue region) (A). The 
comparison of spectral band area between the LP and HP groups based on serum (B), exosome (C), and HDL spectra (D); 
* = p < 0.05; ** = p < 0.01; *** = p < 0.001. 

There are difference in HP and LP 
group in exosome lipid, exosome 
nucleic acid, and HDL protein.

Suggests possible markers to 
differentiate between HP and LP.

*High percentage (HP): ≥6% , Low percentage (LP): ≤3%
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Lipids (3000–2800 cm-1)

Result: Differences between Spectra from the LP and HP Groups

Protein/phospholipids/DNA/RNA/carbohydrate 

(1800–900 cm-1) 

Absorbance bands:

Figure 2. Averaged second derivative ATR-FTIR spectra with SNV normalization in the regions of 3000–2800 cm−1 (pale-pink box) and 1800–900 cm−1 (pale-grayish green box). Comparison of averaged 
second derivative spectra between LP and HP groups in serum (A), exosome (B), and HDL spectra (C). Comparison of band intensity was done by independent sample t-test. A significant difference in 
band intensity is depicted by the arrow (→). Blue and red represent the elderly groups with a low percentage (LP; ≤3%) and a high percentage (HP; ≥6%) of pathogenic CD4+ T cells, respectively.

➢ Serum: 
Similar between 2 groups

➢ Exosome: 
• Only the band at 1107 cm−1 had significantly higher intensity in the HP compared to LP group

• Assigned to v (CO) and v (CC)

➢ HDL:
• Significant difference only at the band 984 cm−1 

• Assigned to uracil ring motions of RNA

Difference in the spectra between 2 group if exosome and HDL. 

Might be possible to differentiate 2 group using these 2 sample types.

*High percentage (HP): ≥6% , Low percentage (LP): ≤3%
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Result: Discrimination by Unsupervised Analysis (Principal Component Analysis)

Total of 129 serum, exosome, and HDL spectra analyzed:

• Lipid region (3000–2800 cm−1)

• Mixed region (1800–900 cm−1)

• Protein region (1700–1500 cm−1)

• Fingerprint region (1500–900 cm−1)

Figure 3. PCA analysis of the 1700–1500 cm−1 FTIR exosome spectral range. PCA 
score plots (A) and PCA loading plots (B). PCA score plots showed distinct 
clustering between the LP (blue box) and HP groups (pink box). PCA loading plots 
identify specific important peaks for the LP and HP groups.

Wave-number around 1700–1500 cm−1  (protein) of 
exosome spectra showed a possible separation between 
the LP and HP groups.

*High percentage (HP): ≥6% , Low percentage (LP): ≤3%

The protein region could be used to discriminate between the LP and HP groups. 

Unsupervised analysis give possible separation, but better analysis or algorithm might be better.
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Result: Establishment of Partial Least Square Discriminant Analysis (PLS-DA) Model for Discrimination

Exosome spectra (1700–1500 cm−1) divided into two datasets: training 
set and testing ; 70:30
• 90 spectra > training
• 39 spectra > testing

Figure 4. PLS-DA analysis results. A score plot of PLS-DA of the 1700–1500 cm−1 FTIR exosome spectral range (A), and predictive results of 
PLS-DA generated using the 1700–1500 cm−1 region (C). False predictions are depicted with stars (*). Nine false-negative and five false-
positive predictions were identified with the PLS-DA predictive model.

➢ PLS model generated gave a discrimination along with Factor-1 (x-axis).

Discrimination using PLS-DA model 
could be observed but the performance of 

the PLS-DA model was not favorable 
enough.

Better classification model is needed.
*High percentage (HP): ≥6% , Low percentage (LP): ≤3%

Based on PLS model:
• HP group set to a positive value (+1)
• LP group was assigned to a negative value (−1)

➢ 14 false predictions

*9 false negative *5 false positive

64% accuracy, 69% sensitivity, 61% specificity, 55% PPV, and 74%NPV
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Result: Classification Model Using Advanced Machine Learning Algorithms

Result: Serum; 70:30 for training and testing

Table 1. Comparison of multiple advanced machine learning algorithms for classification models in serum samples.
Abbreviations:Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV— negative predictive value; RF—
random forest; SVM—support vector machine; NN—neural network. Values in the parentheses after NN indicate the number of hidden 
layers used in the NN parameter. Values highlighted in grey are the best model in each spectral region.

Unfavorable region (3000-2800) for generating 
classification models 

Classification models based on neural network 
(NN) possessed very high accuracy in the range of 

90–100% in the 4 region.

In serum:
Best discrimination in serum is in the 1800-900 

region by using NN model.

In other region except 3000-2800 region, NN 
still shows high accuracry 90-100%.

Lipid

Mixed

Protein

Fingerprint

Combined
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Result: Classification Model Using Advanced Machine Learning Algorithms

Result: Exosome; 70:30 for training and testing

Table 2. Comparison of multiple advanced machine learning algorithms for classification models in exosome samples.
Abbreviations:Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV— negative predictive value; RF—random forest; SVM—
support vector machine; NN—neural network. Values in the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values 
highlighted in grey are the best model in each spectral region.

Classification models by the NN 
algorithm with different hidden layers 

provide varying accuracy of 
approximately 90–95%.

J48 shows highest accuracy (85%) in 
the 3000-2800 region

RF & SVM algorithm provided the 
potential for differentiating between 2 

groups, with 74–90% and 72–82% 
respectively.

In the Exosome: 
NN shows the best accuracy 

differentiating between the group in all 
regions except 3000-2800.

Using lipid region give challenges to 
differentiate the group but J48 is the 

best to differentiate.

It is possible to differentiate exosome 
between 2 groups by using all region

Lipid

Mixed

Protein

Fingerprint

Combined
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Result: Classification Model Using Advanced Machine Learning Algorithms

Result: HDL; 70:30 for training and testing

Table 3. Comparison of multiple advanced machine learning algorithms for classification models in HDL samples.Abbreviations:Acc—accuracy; 
Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV— negative predictive value; RF—random forest; SVM—support vector 
machine; NN—neural network. Values in the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values 
highlighted in grey are the best model in each spectral region.

Lipid

Mixed

Protein

Fingerprint

Combined

NN algorithm was the best algorithm in 
all regions used. The accuracy 

performance shown was 72–97%

J48 shows comparable performance to 
NN in 2 region

In the HDL: 
NN algorithm was the best algorithm in 

all regions used.

Best region of HDL spectra to 
differentiate between 2 groups is 1800-

900.

3000-2800 region one again shows the 
hardest regions used to differentiate 

between 2 groups.

Various algorithms at lipid 
region showed unsatisfactory potential 

for discrimination, with the best 
accuracy of 72%
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T-Helper Cells:

(Pathogenic CD4+ T-cells)

Paper 1: Conclusions

• CD28-
• NKG2D+
• High IL-17 producing cell 

• ATR-FTIR combined with advanced machine learning algorithms allows differentiating the elderly 

with a low percentage (LP) and a high percentage (HP) of pathogenic CD4+ T cells.

• Exosomes are the most likely source of biomarkers (based on PCA and PLS-DA). The use of 

advanced machine learning algorithms exploring all types of samples (serum, exosomes, and HDL) 

could be used to classify these two groups.

• The classification models generated by the NN algorithm resulted in the best performance with an 

accuracy of 100% in serum (1800–900 cm−1), 95% in exosomes (1700–1500 and 3000–2800 and 

1800–900 cm−1), and 97% in HDL (1800–900 cm−1)
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Paper 1: Conclusions (cont.)

ATR-FTIR gives advantage 

• Ease of handling samples with relatively short measurement duration (only a few minutes)

• Small amount of required sample volume

• Reagent-free approach

• High signal to noise ratio output that facilitates chemometric analysis

• May be suitable for studying multiple biochemical alterations in biological samples where a 

single FTIR spectrum can provide various biochemical information related to health conditions.
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Paper 2: Overview

What is observed in this study?

Extracellular Vesicles:

• Microvesicles (lEVs)

•  Exosomes (sEVs)

• Carry genetic and molecular information

Objective:

To demonstrate the potential screening probability for 

differences between sEVs secreted by ionizing radiation 

(IR) induced SnCs and quiescent control cells (non-

SnCs) using atomic force microscopy (AFM), surface potential 

microscopy, and Raman spectroscopy. 20



Isolated sEV/exosome

Paper 2: Materials and Methods (Isolation & Confirmation)
EV isolation using differential ultracentrifugation.

EV analysis: Characteristics, Size, Distribution

IMR90 Cells

20 Gy X-ays

Western Blot Transmission Electron Microscope (TEM) Nanoparticle Tracking Analysis (NTA) Microscope

IMR90 Cells
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Result: Isolation and analysis of EVs from SnCs

(B). The sEVs derived from the non-SnCs and SnCs 

expressed: 

• Classical sEV surface markers (CD9, CD63, and flotillin-1)

• Bio genesis marker (TSG101)

sEV biogenesis marker

sEV surface markers

loading control

Fig. 1 Isolation and analysis of sEVs from quiescent (non-SnCs) or senescent cells (SnCs) by differential ultracentrifugation (B) Western blot analysis of cell 
lysate, sEVs, and soluble factors (SFs) for sEV surface markers CD9, CD63, and flotillin-1 and the sEV biogenesis marker TSG101. GAPDH was used as a 
loading control. (C) Nanoparticle tracking analysis (NTA) size measurements and (D) size distribution plot of sEVs derived from non-SnC and SnC (n = 17 
per group). (E) Representative TEM images of sEVs. Scale bars: 100 nm. (F) Quantification of particle size from TEM images (n = 45 per group). (G) NTA 
particle concentration measurements of non-SnC and SnC-derived sEVs (n = 3 per group). All values are mean ± S.D. ns: not significant, ***p < 0.001. A 
two-tailed unpaired t-test was used for statistical analysis.

*EV: extracellular vesicle; sEV: small extracellular vesicle/exosome; SF: soluble factor

The isolated EV from both senescent and non-senescent 

cells were confirmed as sEV.

The sEVs was secreted higher in senescent condition 

(C-F). 

The sEVs shows modal sizes and size 

distributions corresponding to typically reported 

sizes (30–200 nm)

Negligible difference  in the diameters of the non-

SnC and SnC-derived sEVs (approximately 30–120 nm)

(G). 

The secretion of sEVs increased considerably in SnCs

*Snc: senescent cells; non-SnCs: quiescent cells
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Paper 2: Materials and Methods
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Result: Mapping of nanomechanical properties of SnC-derived sEVs via PF-QNM

Biophysical properties obtained using PF-QNM

(A). 

The height of non-SnC sEV (17.43 nm) (green) and 

SnC sEV (17.02 nm) (red) was almost similar

Fig. 2 Biophysical properties obtained using PF-QNM for sEVs from non-SnC (left) and SnC (right). (A) Topographical AFM images

(Table 1). 

SnC-derived sEVs increased in stiffness, had 

larger deformation, and higher adhesion value 

(significant). 

Table 1 Nanomechanical properties of non-SnC- and SnC-derived sEVs, obtained from histograms by fitting a Gaussian function

sEV from different source had similar size, however they have different biophysical properties.

This may suggest a changes in the biomolecular content (cargo) of the sEV derived from senescent cells
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Result: Mapping of the nanoelectrical properties of SnC-derived sEVs by KPFM

Nanophysical properties obtained using KPFM

(A)&(B)
There was no significant difference in the sizes of sEVs 
obtained through KPFM between non-SnC-derived sEVs 
(8.0 ± 2.7 nm) and SnC-derived sEVs (8.1 ± 2.8 nm). 
Consistent with that of the PF-QNM results

Fig. 3 Analysis of KPFM for physical and electrical properties of sEVs isolated from non-SnCs and SnCs. (A) Topographical AFM images of a single non-SnC-derived 
sEVs and SnC-derived sEVs. Line profiles of each image are depicted below. (B) Quantification of the height of sEVs derived from non-SnCs and SnCs (n = 100 per 
group). (C) Electrical property mapping of a single non-SnC-derived sEV and SnC-derived sEVs. Line profiles of each image are shown below. (D) Quantification of the 
surface potential of sEVs from non-SnCs and SnCs (n = 100 per group). ns: not significant, ****p < 0.0001. A two-tailed unpaired t-test was used for statistical analysis.

These results suggest that cellular senescence altered the 

membrane composition of sEVs secreted by cells. 

Surface potential of sEVs is associated to changes in their 

composition of the sEV membrane

(C)&(D)
A significant difference in the surface potential was observed 
by KPFM between non-SnC-derived sEVs (−855.2 ± 3.8 mV) 
and SnC-derived sEVs (−643.9 ± 2.7 mV)

Consistent with PF-QNM results
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Result: Biochemical features of SnC-derived sEVs using Raman spectroscopy

Biochemical by Raman spectroscopy (100 spectra each)

(A). Striking variability of raman spectra from the non-SnC  and SnC-derived 

sEVs.

Fig. 4 Analysis of SnC-derived sEVs using Raman spectroscopy. (A) Raman spectra (solid lines) and ±5% standard deviation (shaded area) of sEVs from non-SnC and SnC. (B) A plot of 3D-PCA scores with the first, second, and third principal 
components (PCs) for individual Raman spectra. (C) Raman intensities of characteristic peaks for (+) and (−) charged amino acids. Non-patterned and patterned bar plots represent the summation of the Raman intensities at characteristic 
peaks of (+) and (−) charged amino acids, respectively. (D) Raman intensity ratios of (+) and (−) charged amino acids, using each value of summation of Raman intensities at the characteristic peaks for (+) and (−) charged amino acids.

(B). There was a difference in PC3 between non-SnC- and SnC-derived sEVs

(C). sEVs secreted from SnCs had more summation of (+) charged amino 

acids compared to those secreted from non-SnCs

• Distinct biochemical profile of the sEVs secreted by non-SnCs and SnCs

• Possible to differentiate the sEV from both group by PCA analysis

• Many positively charged substances were distributed on the surfaces of 

the SnC-derived sEVs, consistent with the AFM results 

(D). The ratio (+ to -) was higher for the sEVs secreted from SnCs than for 

the sEVs secreted from non-SnCs
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Paper 2: Materials and Methods

27



Result: Analysis of a select group of positively charged SASP proteins in SnC-derived sEVs

Result: Analysis of a selected proteins enriched in SnC-derived sEV (WB)

(A). Levels of IGFBP7, gremlin-1, and annexin II 

increased markedly in SnC-derived sEVs

*sEV: small extracellular vesicle/exosome; SF: soluble factor

Inconclusive

All or only some SnC-derived sEV subsets carried 

IGFBP7, gremlin-1, and annexin II

Fig. 5 Analysis of a select group of positively charged proteins enriched in SnC-derived sEV. (A) 
Western blot analysis of cell lysate, sEV, and SFs for IGFBP7, gremlin-1, and annexin II. GAPDH 
was used as a loading control.

Senescent cause changes (increase) in the protein content of sEV
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Result: Analysis of a select group of positively charged SASP proteins in SnC-derived sEVs (cont.)

Result: Analysis of a selected proteins enriched in SnC-derived sEV (IF)

Markers:

• CD63 (red, sEV marker)

• (C) IGFBP7 (green, cargo protein of sEV)

• (D) annexin II (green, cargo protein of sEV)

• (E) gremlin-1 (green, cargo protein of sEV)

(C-H)

Total number of IGFBP7- and annexin II-

carrying CD63+ vesicles tended to increase, 

but the difference was not significant in 

gremlin-1-carrying CD63+ vesicles

Fig. 5 (cont.) (C) IGFBP7 (green, cargo protein of sEV), (D) annexin II (green, cargo protein of sEV) or (E) gremlin-1 (green, cargo 
protein of sEV) shown separately or as a merged image. In the merged image, arrows indicate double-positive sEVs. Scale bar: 10 
μm. (F)–(H) Quantification of co-stained CD63-positive (n > 10 images per group) and cargo protein-positive sEV (n > 10 images 
per group). All values are mean ± S.D. ns: not significant, *p < 0.05. A two-tailed unpaired t-test was used for statistical analysis.

C

D

E

Three positively charged proteins—may 

be factors contributing to their distinct 

biophysical and biochemical 

characteristics at the nanoscale.
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Paper 2: Conclusion

PeakForce Quantitative 

Nanomechanics (QNM)

Kelvin Probe Force 

Microscopy (KPFM)

Raman Spectroscopy

SnC-derived sEVs

Noninvasive 

Safe 

Sensitive

• Three combined techniques (QNM, KPFM, Raman spectroscopy) can be used 

for the high-resolution and multi-parameter characterization of SnC-derived 

sEVs. Furthermore, these 3 method can be used to investigate the biophysical 

features of SnC-derived sEVs, without specific biomarkers.

• The biophysical properties of sEVs can be a hallmark of cellular senescence 

and can be applied to develop noninvasive, safe, and sensitive analytical 

methods to scrutinize SnC-derived sEVs in cell culture, as well as in clinical 

samples such as plasma from patients with age-related diseases.
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Strengths Weaknesses

Criticism

Paper 1

Paper 2

• The study was conducted using In 

vitro samples

• No further confirmation of protein 

content in the other sEVs subsets

• The study demonstrate the potential use 

of Raman Spectroscopy, KPFM, ATM to 

measure senescent condition in the 

sample… additionally give marker of 

senescence

• Number of spectra used only 129, 

where ideally is 1,000 samples for 

SVM and NN algorithm.

• The study demonstrates the potential 

use of ATR-FTIR to discriminate 

samples with high and low percentage 

of immunosenescent cells
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