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Introduction: Senescence

> Senescence

%

Aging process on a cellular level. e © g
. . o D @)+ Q9
Microscopic changes on our cells throughout our lifetime. ek

Senescence occurs on
» Immunosenescence (Immune+Senescence) ALL CELLS!

Age-related changes in the immune system

» Classification of aging (Immunology): 65 Years Old

Table 2.2

Table 2.1 Number of countries with over 0.5 million persons aged 65 years and older, 2023 and 2050
Number (in thousands) and proportion of persons aged 65 years and over by development group, 2023 and
2050 Older persons aged 65 years and over 2023 2050
: 2023 2050 0.5-1 million 10 4
Region/year Numb P - Nomb P -
umbper ercentage umber ercentage 1-10 million 9 o5
Developed countries 258,311 20.2 351,500 27.8 N
ODCs 506,841 9.0 1,132,877 17.4 10 million-and over ! 2
LDCs 42 637 3.7 118,566 6.1 Total 20 31
LDC: Least Developed Countries; ODC: Other Developing Countries Source: World Population Ageing 2023 (United Nations)

[“WHO recognize ageing at the biological level can lead to gradual decrease in physical and mental capacity, increasing risk of disease and death.” j




Introduction: Immunosenescence

> Senescence on innate immune > Senescence on adaptive

system: limmune system
e NK cells: Increase number CD56dim cells, reduced * B cell: Decrease of antibody secretion capability
cytotoxicity, level of cytokines and chemokines reduced. e T cell: defects in proliferation and effector functions

* Monocytes: Increase of absolute numbers, decrease in Toll-

like Receptor (TLR) activation

Effects of Immunosenescence?
3 O O 33
coxry % m
2N ' )

Immune response Increased infection susceptibility .
reduction =

4 -
; o
° @ c Spread of SASP protein to the
Lingering low grade normal structure and function of
(FAILURE) inflammation surrounding cells and tissues
Cell proliferation failure Accelerate disease development &

progression *SASP: senescence-associated secretory phenotypes



Introduction: Pathogenic & Immunosenescent Cells

> What is this cells?

» Aberrent phenotype & functions * Progression into disease

* Change in functions « Immunosenescence

% CD4+CD28-NKG2D+ Tecells  * CD4+CD57+ (high) CD28-T cells
(Senescent)

e Associated with cardiovascular disease risk factors

(Pathogenic)
« High IL-17 producing, associated type 2
diabetes mellitus (T2DM) (Phoksawat et al.,

2017) “ CD39+CD8+ T cells (Pathogenic)

* High IL-17 & IFN-y producing, expanded in < Associated with Crohn’s disease (Bai et al., 2015)
elderly (Phoksawat et al., 2020; Sornkayasit et < PD-1 expressing, CD8+ T cells specific for HCV or
al., 2021) HIV (Gupta et al., 2015)

(Sornkayasit et al., 2025)



Introduction: Biomarker & Technology to Senescence Detection

Biomarker?

Cell cycle arrest Increased cell size DNA damage SASP R ——
Inflammageing .. Memory T cellt

[ o :. :.. :.. Cellular @ Effecto.rTc'eM
IL-6, IL-8, IL-18, IL-29, e eanes < diversity|
Virual memory cellt

IFN-y, TNF %
:. o @ o' Angiten recognition repertoire |

Source: https://pme.ncbi.nlm.nih.gov/articles/PMC8038995/ Source: https://www.nature.com/articles/s41392-023-01451-2#Sec2

Flow Cytometry:

 Directly measurement of
expressing senescence markers

FTIR:

« Label-free, non-destructive, to
observe biochemical changes

0 “ € BD FACSLyric

Water interference

« Expertise
 Poor spatial resolution

Subjective analysis (gating)
Cost & accessibility

BD Biosciences
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Introduction: Raman/SERS Application

> Agriculture » Pharmaceuticals
Q5 ey :
= e g @ 5 A
Qs ™o g8 5 g
Pesticides residues Chemical Additives: Dye Melamine in dairy Identify components Stability Purity & Uniformity

» Medical Field

o~ * ¥ m
¢ & S r‘% :
ﬂ = "'.r‘t‘ %<EE>¢ \ I* '

Pigirgsg’fifi(ci?éiﬁal egradation Material analysis Biopsy: cancer Pathogen Neurological diseases
Immunosenescence? Pathogenic cells?
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Paper 1: Overview Th Cells (CD4+)

Th Cells, CD4+:

« Activated by antigen recognition by MHC Class II molecule
» Coordinating immune response:

o Cytokine secretion

» Develop long-lived memory cells Th cells as “conductor”

( {é} l Inappropriate T helper subset differentiation l T cell dysfunction:

[ Diminished proliferative capacity ] Progression of disease

@ 0 Increase in regulatory T cells Importance for Early Detection

Age-Related




Paper 1: Overview

Conditions observed in this study:

(Pathogenic CD4+ T-cells)

* CD28-
« NKG2D+
« High IL-17 producing cell

Article

Attenuated Total Reflectance-Fourier Transform Infrared
(ATR-FTIR) Spectroscopy Discriminates the Elderly with a
Low and High Percentage of Pathogenic CD4+ T Cells

Rian Ka Praja 1205, Molin Wongwattanakul 2(*, Patcharaporn Tippayawat >3, Wisitsak Phoksawat %>,
Amonrat Jumnainsong %%, Kanda Sornkayasit 2’ and Chanvit Leelayuwat 2-6-*

Flow Cytometry:
e High Percentage (HP)

ObJ €CtiVGZ « Low Percentage (LP)

Left-over sera

e To discriminate the elderly groups with a low

percentage and a high percentage of pathogenic CD4+ T

cells by using machine learning-empowered ATR-FTIR.

« To investigate biochemical changes in serum, exosome,

and HDL samples

High percentage (HP): =6% Analysis:

o e Band Area
Low percentage (LP): <3% . Oxidative Stress

Samp]e size: 21LLP & 22HP e Principal component analysis (PCA)
. e Machine learning algorithm



Paper 1: Materials and Methods

Sample preparation (1)

I

e High Percentage

» Low Percentage
CD4+CD28-NKG2D+

(pathogenic CD4+) T cells

Left-over sera

HDL Isolation
o HDL purification kit
(Cell Biolabs)
e 200 pL serum

Exosome Isolation
e ExoQuick™ Exosome
Precipitation Solution
(System Biosciences)
e 50 uL serum

—80 °C storage

Spectral Acquisition & Analysis (2)

3 uL 3 1L

Acquisition at 4000-650 cm™

. 64 scans

Agilent 4500 FTIR spectroscopy Spectral resolution 4 cm™

3 measurements/sample

5 minutes

Raw Spectra

A

\

Unscrambler

SpectraGryph

.. ONE APP TO TREAT
THEMALL ..

% Accuracy, Sensitivity,
Specificity, PPV, NPV

Biochemical Components Separation Trend



Result: Biomolecular Content Study by Spectral Band Area Analysis

A — ATR spectra collected and compared:
- i * 3000—2800cm-1 (lipid)
| * 1700—1500cm-1 (protein)
& y\ v o ¢ 1270—960cm-1 (nucleic acid)
/- (- g V. Acid
Serum ‘ \—\w(\\, —~— "o < . — EXOSOIIle:
| - = Lipid and nucleic acid contents inthe HP group were significantly higher than inthe LP
e, A group (p<0.001 and p<0.01)
HDL
W ] ‘ : , , —HDL:
ey o Protein contents was significantly different between the HP and LP groups (p<0.05)
B C D
250+ = 250 = 150 -
= i - dl K e T ° °
3% 3™ 5 * There are difference in HP and LP
5 L) S 100 = . . .
g " g " . B N group in exosome lipid, exosome
r— 1 - — i --— ('_U o o o
5" 5" - S 5o nucleic acid, and HDL protein.
£ s0- - e £ 50 pmme L k= - =
Serum lipid Serum protein Serum nucleic acid 3 Exo lipid Exo protein Exo nucleic acid ; HDL lipid HDL protein HDL nucleic acid SuggeStS pOSSlble markers tO
== HP Group LP Group differentiate between HP and LP.
Figure 1. Results of spectral band area analysis of serum, exosome, and HDL spectra. Representative spectra from serum
(blue), exosome (red), and HDL (green). Regions selected for the spectral band area analysis were 3000—-2800 cm-1 lipid
(orange region), 1700-1500 cm-1 protein (green region), and 1270-960 cm-1 nucleic acid (blue region) (A). The

comparison of spectral band area between the LP and HP groups based on serum (B), exosome (C), and HDL spectra (D);
*=p<0.05; ** =p<0.01; *** =p<0.001.

*High percentage (HP): 6% , Low percentage (LP): <3%



Result: Differences between Spectra from the LP and HP Groups

4
3
2 Serum
1
0
1

M
w1 M /\/W\/”Ww

Absorbance bands:

Protein/phospholipids/DNA/RNA/carbohydrate

Lipids (3000-2800 cm-1) (1800-900 cm-1)

001 2931 2858 1787 1714 1642 1569 1497 1424 1352 1279 1207 1134 1063 995. 929

VW=V \/\\ N\N/ \W\ﬂ w\ NV

1107 em™
v(CO)., (CC)., C=0 stretch:
-4 ribose ring (RNA)

001 2931 2858 1787 1714 1642 1569 1497 1424 1352 1279 1207 1134 1063 995. 929.

3

2 HDL

1 \
i M

0 | /\,/\’\/\ \

| |\

A 4

~ :

< % /

T -3

984 cm !
0 Uracil ring motions (RNA)

» Serum:
Similar between 2 groups

» Exosome:
* Only the band at 1107 cm~had significantly higher intensity in the HP compared to LP group

» Assigned to v (CO) and v (CC)

» HDL.:
 Significant difference only at the band 984 cm™
« Assigned to uracil ring motions of RNA

Difference in the spectra between 2 group if exosome and HDL.

Might be possible to differentiate 2 group using these 2 sample types.

3001 2929 2856 1785 1714 1642 1569 1497 1424 1352 1279 1207 1134 1063 995. 929
wees HP Group e LP Group

Figure 2. Averaged second derivative ATR-FTIR spectra with SNV normalization in the regions of 3000—2800 cm-1 (pale-pink box) and 1800-900 cm-1 (pale-grayish green box). Comparison of averaged
second derivative spectra between LP and HP groups in serum (A), exosome (B), and HDL spectra (C). Comparison of band intensity was done by independent sample t-test. A significant difference in
band intensity is depicted by the arrow (=). Blue and red represent the elderly groups with a low percentage (LP; £3%) and a high percentage (HP; 26%) of pathogenic CD4+ T cells, respectively.

*High percentage (HP): >6% , Low percentage (LP): <3%
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PC-1 (59%)

® HP Group ® LP Group

Figure 3. PCA analysis of the 1700-1500 cm™! FTIR exosome spectral range. PCA
score plots (A) and PCA loading plots (B). PCA score plots showed distinct
clustering between the LP (blue box) and HP groups (pink box). PCA loading plots
identify specific important peaks for the LP and HP groups.

Total of 129 serum, exosome, and HDL spectra analyzed:

* Lipid region (3000—-2800 cm™1)

e Mixed region (1800-900 cm™?)

* Protein region (1700-1500 cm™)

* Fingerprint region (1500-900 cm™)

Wave-number around 1700-1500 cm™ (protein) of

exosome spectra showed a possible separation between
the LP and HP groups.

*High percentage (HP): 26% , Low percentage (LP): <3%

13



Exosome spectra (1700-1500 cm™1) divided into two datasets: training
set and testing ; 70:30

K Scores * 90 spectra > training

2 * 39 spectra > testing
) 1: 2 1) . . . . . .
g g T2 ,.4 '. 1% .. _— » PLS model generated gave a discrimination along with Factor-1 (x-axis).
;g_1: .‘ ’ “0 8 !
] s ¥ Based on PLS model:

< * HP group set to a positive value (+1)
] L S S A AL A A * LP group was assigned to a negative value (-1)
Factor-1 (58%, 18%)
® HPGroup @ LP Group » 14 false predictions

C ~ 64% accuracy, 69% sensitivity, 61% specificity, 55% PPV, and 74%NPV

Predicted Y (Class, Factor-1)
. o
 E—— |

; * B * = * * * 0 L — L
* ¥ &
| J |
HP Group LP Group
*9 false negative

Figure 4. PLS-DA analysis results. A score plot of PLS-DA of the 1700—1500 cm—1 FTIR exosome spectral range (A), and predictive results of
PLS-DA generated using the 1700—1500 cm—1 region (C). False predictions are depicted with stars (*). Nine false-negative and five false-
positive predictions were identified with the PLS-DA predictive model.

*High percentage (HP): =6% , Low percentage (LP): <3%

Discrimination using PLS-DA model
could be observed but the performance of

the PLS-DA model was not favorable
enough.

Better classification model is needed.

14



Result: Classification Model Using Advanced Machine Learning Algorithms

Result: Serum; 70:30 for training and testing

Performance
Sample Region (cm™—1) Algorithm S S NPV
ens pec
Acc (% PPV (%
cc®) () (%) O (o)
EERE SR > = = 22 12 Unfavorable region (3000-2800) for generating
RE > >3 >0 >0 2 classification models
3000-2300 SVM 44 46 38 60 26
Lipid NN (4) 51 53 50 50 53
]48 Decision Tree 72 80 67 60 84
RF 92 100 86 85 100 Classification models based on neural network
15\;/{'].{}_3[]{} SVM 77 79 75 75 79 (NN) possessed very high accuracy in the range of
xe NN (20) 100 100 100 100 100 90—-100% in the 4 region.
148 Decision Tree 69 75 65 60 79
RF 90 90 89 90 89
Serum 1700-1500 SVM 62 58 75 90 32
Protein NN (14) 90 86 94 95 84
J48 Decision Tree 56 60 54 45 68 In serum:
RF 90 90 89 90 89 C e e ..
1500-900 Best discrimination in serum is in the 1800-900
_ _ SVM 72 74 70 70 74 on b 1o NN model
Fingerprint NN (12) 97 100 95 95 100 region oy using modael.
J48 Decision Tree 74 81 70 65 &84 . .
RE 87 89 g5 - 39 In other region except 3000-2800 region, NN
3000-2800 and 1 sh hich o
1800900 SVM 56 58 55 55 58 still shows high accuracry 90-100%.
Combined NN (11) 98 95 100 100 97

Table 1. Comparison of multiple advanced machine learning algorithms for classification models in serum samples.
Abbreviations:Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV— negative predictive value; RF—
random forest; SVM—support vector machine; NN—neural network. Values in the parentheses after NN indicate the number of hidden
layers used in the NN parameter. Values highlighted in grey are the best model in each spectral region.



Result: Classification Model Using Advanced Machine Learning Algorithms

Result: Exosome; 70:30 for training and testing

Performance
Sample Region (cm—1) Algorithm
Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)
J48 Decision Tree 85 79 93 95 74
3000-2800 RF 74 75 74 75 74
o SVM 72 71 72 75 68
Lipid NN (14) 77 79 75 75 79
|48 Decision Tree 82 81 83 85 79
RF 90 90 89 90 89
180Q—QOU SVM 74 81 70 65 84
Mixed NN (10) 90 94 86 85 95
J48 Decision Tree 67 67 67 70 63
Exosome RF 79 83 76 75 84
1 ?00_1. 200 SVM 72 76 68 65 79
Protein NN (11) 95 95 95 95 95
J48 Decision Tree 85 94 78 75 95
RF 87 86 89 90 84
1500-900 SVM 72 76 68 65 79
Fingerprint NN (16) 92 90 94 95 89
J48 Decision Tree 79 83 76 75 84
RF 90 90 89 90 89
3000-2800 &- 1800900 SUM 8> 34 30 30 34
Combined NN (9) 95 91 100 100 89

Table 2. Comparison of multiple advanced machine learning algorithms for classification models in exosome samples.

Abbreviations: Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV— negative predictive value; RF—random forest; SVM—
support vector machine; NN—neural network. Values in the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values
highlighted in grey are the best model in each spectral region.

J48 shows highest accuracy (85%) in
the 3000-2800 region

Classification models by the NN
algorithm with different hidden layers
provide varying accuracy of
approximately 90—95%.

RF & SVM algorithm provided the
potential for differentiating between 2
groups, with 74—90% and 72—82%
respectively.

In the Exosome:
NN shows the best accuracy
differentiating between the group in all
regions except 3000-2800.

Using lipid region give challenges to
differentiate the group but J48 is the
best to differentiate.

It is possible to differentiate exosome
between 2 groups by using all region




Result: Classification Model Using Advanced Machine Learning Algorithms

Result: HDL; 70:30 for training and testing

Various algorithms at lipid
region showed unsatisfactory potential
for discrimination, with the best
accuracy of 72%

NN algorithm was the best algorithm in
all regions used. The accuracy
performance shown was 72—97%

J48 shows comparable performance to
NN in 2 region

Performance
Sample Region (cm—1) Algorithm
Acc (%) Sens (%)  Spec(%) PPV (%) NPV (%)
J48 Decision Tree 69 79 64 55 84
3000-2800 RF 44 45 42 45 42
- SVM 56 56 57 70 42
Lipid NN (8) 72 70 75 80 63
J48 Decision Tree 72 74 70 70 74
1800-900 RF 85 85 84 85 34
HDL - SVM 74 73 76 80 68
Mixed NN (14) 97 100 95 95 100
J48 Decision Tree 79 83 76 75 84
17001500 ﬁRF 74 75 74 75 74
: SVM 51 52 50 60 42
Protein

NN (8) 79 77 82 85 74
J48 Decision Tree 92 95 90 90 95
.

Fingerprint SVM R
NN (9) 92 100 86 85 100
J48 Decision Tree 90 94 86 85 95
3000-2800 & 1800-900 RE 52 54 50 59 i
N b N SVM 69 67 73 80 58
ompine NN (15) 90 100 83 80 100

Table 3. Comparison of multiple advanced machine learning algorithms for classification models in HDL samples.Abbreviations:Acc—accuracy;
Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV— negative predictive value; RF—random forest; SVM—support vector
machine; NN—neural network. Values in the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values
highlighted in grey are the best model in each spectral region.

In the HDL:
NN algorithm was the best algorithm in
all regions used.

Best region of HDL spectra to
differentiate between 2 groups is 1800-
900.

3000-2800 region one again shows the
hardest regions used to differentiate
between 2 groups.




Paper 1: Conclusions

e ATR-FTIR combined with advanced machine learning algorithms allows differentiating the elderly

with a low percentage (LP) and a high percentage (HP) of pathogenic CD4+ T cells.

« Exosomes are the most likely source of biomarkers (based on PCA and PLS-DA). The use of

-

 The classification models generated by the NN algorithm resulted in the best performance with an A T-Helper Cells:

advanced machine learning algorithms exploring all types of samples (serum, exosomes, and HDL)

y)
)

could be used to classify these two groups.

: : V' (Pathogenic CD4+ T-cells
accuracy of 100% in serum (1800—900 cm™), 95% in exosomes (1700—1500 and 3000—2800 and ( 5 4 )

‘ * (CD28-
- « NKG2D+
1800—900 cm™), and 97% in HDL (1800—900 cm™) . High IL-17 producing cell

18



Paper 1: Conclusions (cont.)

ATR-FTIR gives advantage

Ease of handling samples with relatively short measurement duration (only a few minutes)
- Small amount of required sample volume

» Reagent-free approach

« High signal to noise ratio output that facilitates chemometric analysis

« May be suitable for studying multiple biochemical alterations in biological samples where a

single FTIR spectrum can provide various biochemical information related to health conditions.

19



Paper 2: Overview

»
Nanoscale ot
Horizons
b |
]
) Check for updates Nanoscale biophysical properties of small . [ w—-d
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. Surface Marker
Extracellular Vesicles: -
& Size
e Microvesicles (IEVs) EV Isolation
 Exosomes (SEVs) {
- Carry genetic and molecular information S
. . OB OB
Objective: SRR, |
To demonstrate the potential screening probability for SRR
. . . . « 4 PeakForce Quantitative Kelvin Probe Force Raman Spectrosco
differences between sEVs secreted by ionizing radiation Q P by

Nanomechanics (QNM)  Microscopy (KPFM)

Nanoelectica

(IR) induced SnCs and quiescent control cells (non-
SnCs) using atomic force microscopy (AFM), surface potential

Biochemical

microscopy, and Raman spectroscopy.



Paper 2: Materials and Methods (Isolation & Confirmation)

EV isolation using differential ultracentrifugation.

A : Dead cells : : Cell debris :
U s ot i o D L i e ]
IMR9O Cells A A
n Bl
SEET : :
T
non-SnC Conditioned ” . o _
Medium Supernatant . Supernatant . Supernatant Pellet
* 2,000 xg 10,000 x g 20,000 x g 100,000 x g 100,000 x g
P & 10 min 30 min » 70 min 90 min . 90 min 0
SnC
IMR9o Cells
20 Gy X-ays
Large EV Soluble factor Small EV
(IEV; microvesicle) (SF) (sEV; exosome)

EV analysis: Characteristics, Size, Distribution

Isolated sEV/exosome

Western Blot Transmission Electron Microscope (TEM) Nanoparticle Tracking Analysis (NTA) Microscope



Result: Isolation and analysis of EVs from SnCs

(B). The sEVs derived from the non-SnCs and SnCs

expressed:
* (Classical sEV surface markers (CD9g, CD63, and flotillin-1)

 Bio genesis marker (TSG101)

(C-F).
The sEVs shows modal sizes and size

distributions corresponding to typically reported
sizes (30—200 nm)
Negligible difference in the diameters of the non-

SnC and SnC-derived sEVs (approximately 30—120 nm)

(G).

The secretion of sEVs increased considerably in SnCs

B ca sev  sF C D
0 ¢} &)
c C c
(%)) () )
< Q < Q c Q
e » 2 o 2 o
CD9 _25kDa |
ns
200- e 30-
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% 1004 S S
-30kDa i gt
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o " o 2 104
o 501 ° o
Flotillin-1 | s 50 kDa ¢ £ . 4
. . . (a 0 . : ]
TSG101 |y — -50 kDa ==SEV biogenesis marker 0 T . o - o
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GAPDH |l s , -40kDa m=]oading control 009 % size (nm)
o
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c 404
non-SnC 120 - 2 _***
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*Snc: senescent cells; non-SnCs: quiescent cells

*EV: extracellular vesicle; sEV: small extracellular vesicle/exosome; SF: soluble factor

Fig. 1 Isolation and analysis of sEVs from quiescent (non-SnCs) or senescent cells (SnCs) by differential ultracentrifugation (B) Western blot analysis of cell
lysate, sEVs, and soluble factors (SFs) for sEV surface markers CD9, CD63, and flotillin-1 and the sEV biogenesis marker TSG101. GAPDH was used as a
loading control. (C) Nanoparticle tracking analysis (NTA) size measurements and (D) size distribution plot of sEVs derived from non-SnC and SnC (n = 17
per group). (E) Representative TEM images of sEVs. Scale bars: 100 nm. (F) Quantification of particle size from TEM images (n = 45 per group). (G) NTA
particle concentration measurements of non-SnC and SnC-derived sEVs (n = 3 per group). All values are mean + S.D. ns: not significant, ***p < 0.001. A
two-tailed unpaired t-test was used for statistical analysis.

The isolated EV from both senescent and non-senescent

cells were confirmed as sEV.

The sEVs was secreted higher in senescent condition
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Result: Mapping of nanomechanical properties of SnC-derived sEVs via PF-QNM

Biophysical properties obtained using PF-QNM

s SnC
’ Histogram of Height

A non-SnC

(A).
The height of non-SnC sEV (17.43 nm) (green) and
SnC sEV (17.02 nm) (red) was almost similar

[.49 £ OV

;

# non-SnC
# SnC

100- N
\ 17.02 + 6.315

A\

/ ﬂ

4 \\l}
20 40

Height (nm)

g

Number of values

o

60

o

Fig. 2 Biophysical properties obtained using PF-QNM for sEVs from non-SnC (left) and SnC (right). (A) Topographical AFM images

Stiffness Deformation Adhesion (Table 1).
Type of SEV (MPa + S.D.%) (nm + S.D.) (pN + S.D.) SnC-derived sEVs increased in stiffness, had
Non-SnC 16.10 + 7.05 117 + 0.49 25 12 + 21.92 larger deformation, and higher adhesion value
SnC 21.90 + 9.77 4.10 4 1.24 170.5 4+ 53.98 (significant).

Table 1 Nanomechanical properties of non-SnC- and SnC-derived sEVs, obtained from histograms by fitting a Gaussian function

sEV from different source had similar size, however they have different biophysical properties.

This may suggest a changes in the biomolecular content (cargo) of the sEV derived from senescent cells




Result: Mapping of the nanoelectrical properties of SnC-derived sEVs by KPFM

Nanophysical properties obtained using KPFM
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| There was no significant difference in the sizes of sEVs
obtained through KPFM between non-SnC-derived sEVs
(8.0 £ 2.7 nm) and SnC-derived sEVs (8.1 £ 2.8 nm).
Consistent with that of the PF-QNM results

-
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g 3 non-SnC_SnC A significant difference in the surface potential was observed
dod = N Consistent with PE-QNMTesults | by KPFM between non-SnC-derived sEVs (-855.2 + 3.8 mV)
and SnC-derived sEVs (-643.9 + 2.7 mV)
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= 0 : These results suggest that cellular senescence altered the
-640 Z .. o
£ so 2~ membrane composition of SEVs secreted by cells.
| T -850~ .
T_ —_ L 550 =
S I e
- ’ I Surface potential of sEVs is associated to changes in their
<8 o g% e ..
o /\j::::% S g60- “%‘ composition of the sEV membrane
$ 402 $8 2 Z '
E sl 848 ;%_. -870 I T
Em-v 2 non-SnC SnC

Fig. 3 Analysis of KPFM for physical and electrical properties of sEVs isolated from non-SnCs and SnCs. (A) Topographical AFM images of a single non-SnC-derived
sEVs and SnC-derived sEVs. Line profiles of each image are depicted below. (B) Quantification of the height of sEVs derived from non-SnCs and SnCs (n = 100 per
group). (C) Electrical property mapping of a single non-SnC-derived sEV and SnC-derived sEVs. Line profiles of each image are shown below. (D) Quantification of the
surface potential of sEVs from non-SnCs and SnCs (n = 100 per group). ns: not significant, ****p < 0.0001. A two-tailed unpaired t-test was used for statistical analysis.



Result: Biochemical features of SnC-derived sEVs using Raman spectroscopy

Biochemical by Raman spectroscopy (100 spectra each)
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SnC (A). Striking variability of raman spectra from the non-SnC and SnC-derived

SEVs.

(B). There was a difference in PC3 between non-SnC- and SnC-derived sEVs

(C). sEVs secreted from SnCs had more summation of (+) charged amino

acids compared to those secreted from non-SnCs

(D). The ratio (+ to -) was higher for the sEVs secreted from SnCs than for

the sEVs secreted from non-SnCs

« Distinct biochemical profile of the sEVs secreted by non-SnCs and SnCs
- Possible to differentiate the sEV from both group by PCA analysis
- Many positively charged substances were distributed on the surfaces of

the SnC-derived sEVs, consistent with the AFM results

*non-pattern: positive (+) charge; pattern: negative (-) charge

Fig. 4 Analysis of SnC-derived sEVs using Raman spectroscopy. (A) Raman spectra (solid lines) and +5% standard deviation (shaded area) of sEVs from non-SnC and SnC. (B) A plot of 3D-PCA scores with the first, second, and third principal
components (PCs) for individual Raman spectra. (C) Raman intensities of characteristic peaks for (+) and (-) charged amino acids. Non-patterned and patterned bar plots represent the summation of the Raman intensities at characteristic
peaks of (+) and (-) charged amino acids, respectively. (D) Raman intensity ratios of (+) and (=) charged amino acids, using each value of summation of Raman intensities at the characteristic peaks for (+) and (-) charged amino acids.



Paper 2: Materials and Methods

Cargo Proteins Identities: Target Selection

Cargo Proteins Identities: Target Selection
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Result: Analysis of a selected proteins enriched in SnC-derived sEV (WB)
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Fig. 5 Analysis of a select group of positively charged proteins enriched in SnC-derived sEV. (A)
Western blot analysis of cell lysate, sEV, and SFs for IGFBP7, gremlin-1, and annexin II. GAPDH
was used as a loading control.

*sSEV: small extracellular vesicle/exosome; SF: soluble factor

(A). Levels of IGFBP7, gremlin-1, and annexin II
increased markedly in SnC-derived sEVs

Inconclusive
All or only some SnC-derived sEV subsets carried
IGFBP7, gremlin-1, and annexin II

Senescent cause changes (increase) in the protein content of SEV

28



Result: Analysis of a select group of positively charged SASP proteins in SnC-derived sEVs (cont.)
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Markers:

 CD63 (red, sEV marker)
* (C) IGFBP7 (green, cargo protein of SEV)
* (D) annexin II (green, cargo protein of sEV)

SnC

non-SnC

Three positively charged proteins—may
be factors contributing to their distinct

* (E) gremlin-1 (green, cargo protein of SEV)

biophysical and biochemical

SnC

characteristics at the nanoscale.

Fig. 5 (cont.) (C) IGFBP7 (green, cargo protein of sEV), (D) annexin II (green, cargo protein of sEV) or (E) gremlin-1 (green, cargo
protein of SEV) shown separately or as a merged image. In the merged image, arrows indicate double-positive sEVs. Scale bar: 10
um. (F)—(H) Quantification of co-stained CD63-positive (n > 10 images per group) and cargo protein-positive SEV (n > 10 images
per group). All values are mean + S.D. ns: not significant, *p < 0.05. A two-tailed unpaired t-test was used for statistical analysis.



Paper 2: Conclusion

* Three combined techniques (QNM, KPFM, Raman spectroscopy) can be used
for the high-resolution and multi-parameter characterization of SnC-derived
sEVs. Furthermore, these 3 method can be used to investigate the biophysical
features of SnC-derived sEVs, without specific biomarkers.

« The biophysical properties of SEVs can be a hallmark of cellular senescence
and can be applied to develop noninvasive, safe, and sensitive analytical
methods to scrutinize SnC-derived sEVs in cell culture, as well as in clinical

samples such as plasma from patients with age-related diseases.
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Criticism
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Paper 1
 The study demonstrates the potential * Number of spectra used only 129,
use of ATR-FTIR to discriminate where ideally is 1,000 samples for
samples with high and low percentage SVM and NN algorithm.
of immunosenescent cells
Paper 2

« The study demonstrate the potential use » The study was conducted using In

of Raman Spectroscopy, KPFM, ATM to vitro samples
measure senescent condition in the » No further confirmation of protein
sample... additionally give marker of content in the other sEVs subsets
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