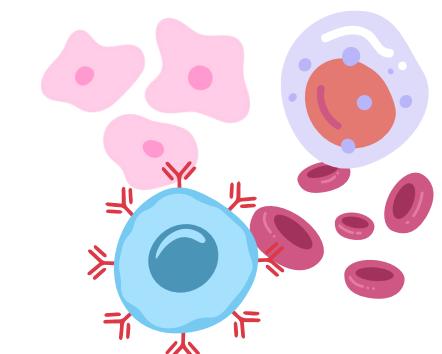


Discriminating Individuals with High and Low Immunosenescent Profiles by Using Blood Serum and Their Components Detected by Raman Spectroscopy

Presented By: Audi Putra Santosa

1st Year Master Student , ID: 685070045-4

Department of Microbiology, Faculty of Medicine, Khon Kaen University


Advisor: Assist.Prof. Wisitsak Phoksawat

Introduction: Immunosenescence

➤ Immunosenescence (Immune+Senescence)

Age-related changes in the immune system

- Abundance and transcriptome data of innate and adaptive immune cells

Senescence occurs on
ALL CELLS!

Immunosenescence only in old age?

- Young age, old immune profile

Immune profile = true biological age of our body?

- Determines body health and the development of diseases.
- Abundances of immune cells and the expression of immune proteins fluctuate with age

RESEARCH ARTICLE

Aging Cell WILEY

Deciphering the role of immune cell composition in epigenetic age acceleration: Insights from cell-type deconvolution applied to human blood epigenetic clocks

Ze Zhang^{1,2,3} | Samuel R. Reynolds¹ | Hannah G. Stolow^{1,2} | Ji-Qing Chen^{1,4} |
Brock C. Christensen^{1,2,3,4} | Lucas A. Salas^{1,2,3,4}

“The immune cell composition was found to be a significant factor influencing the variation on epigenetic clock”

Raman Spectroscopy (Bruker, Edinburgh Instruments)

Raman/SERS approach:

- Raman spectra follows sample composition
- Minimum sample preparation
- Specificity & Sensitivity: Fingerprint
- Versatile sample type

*SERS: Surface Enhanced Raman Spectroscopy

RESEARCH PAPER

Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer

Ningning Gao¹ · Qing Wang² · Jun Tang¹ · Shengyuan Yao¹ · Hongmei Li¹ · Xiaxia Yue³ · Jihong Fu⁴ · Furu Zhong⁵ ·
Tao Wang¹ · Jing Wang⁶

BASIC SCIENCE
Nanomedicine: Nanotechnology, Biology, and Medicine
22 (2019) 102097

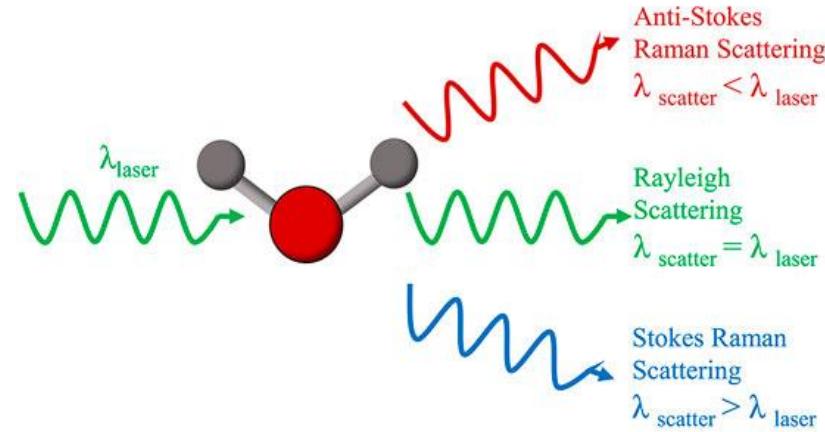
Original Article

nanomedicine
Nanotechnology, Biology, and Medicine

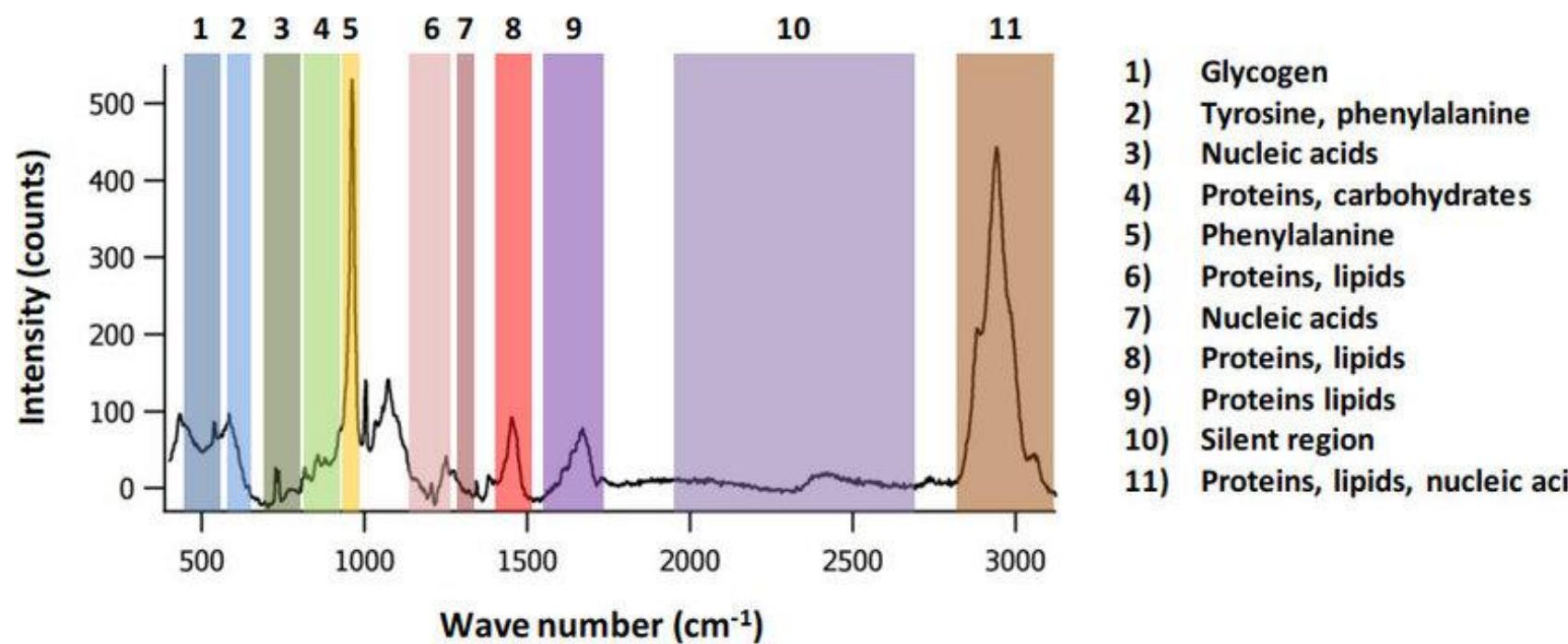
nanomedjournal.com

Raman profiling of circulating extracellular vesicles for the stratification of Parkinson's patients

Alice Gualerzi, PhD^{a,*}, Silvia Picciolini, PhD^a, Cristiano Carlomagno, PhD^a,
Federica Terenzi, MD^b, Silvia Ramat, MD, PhD^b, Sandro Sorbi, MD^{a,b}, Marzia Bedoni, PhD^a


^aIRCCS Fondazione Don Carlo Gnocchi, Italy

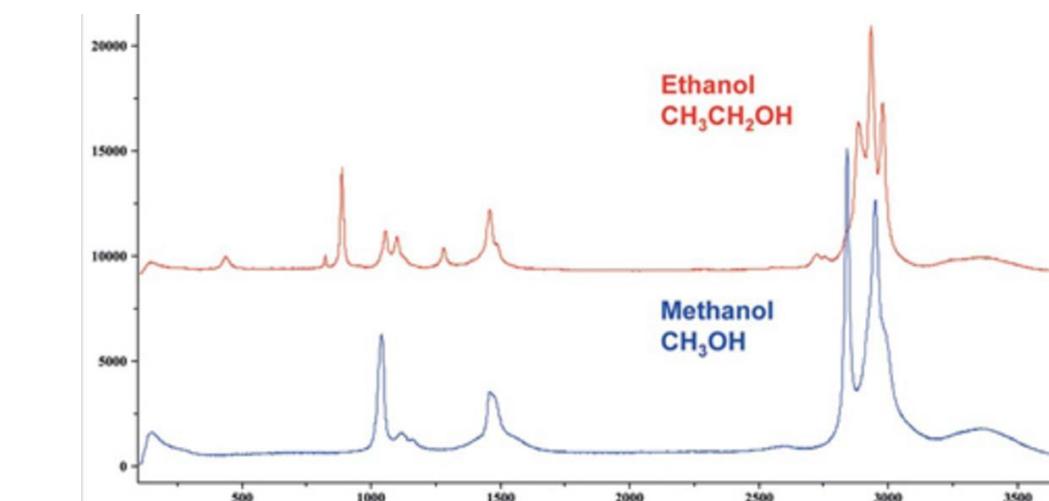
^bUniversità degli Studi di Firenze, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Italy


Revised 13 September 2019

Raman Spectroscopy Principle

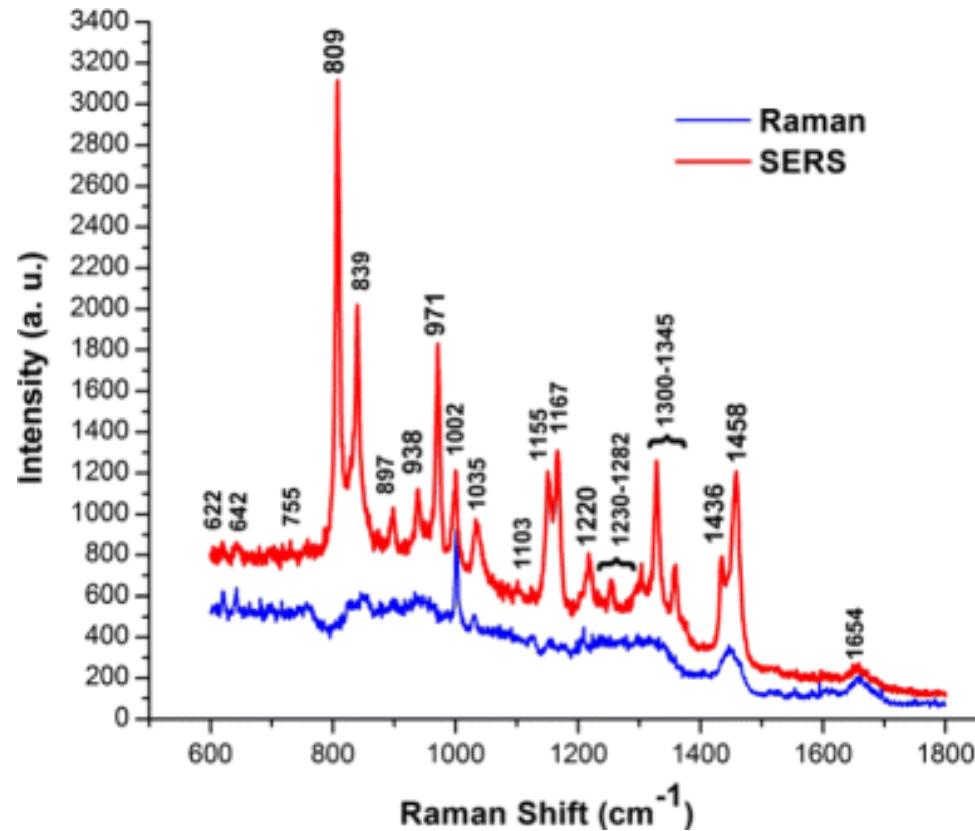
A

Principle of raman scattering (K. Liu et al., 2022)

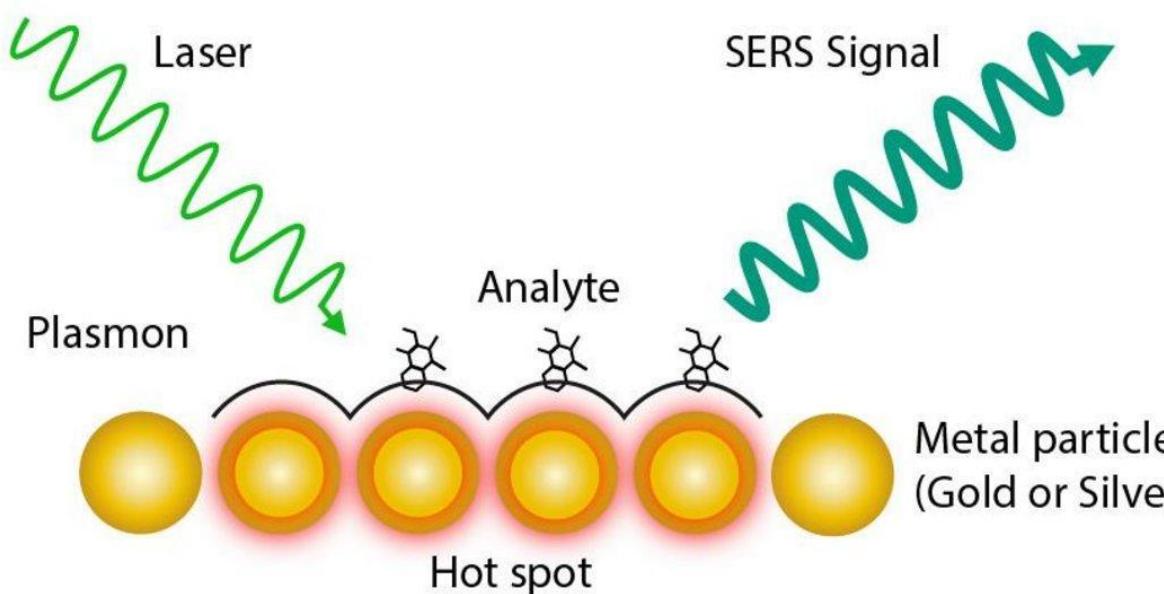

Example of a Raman spectrum of a biological sample (Conforti et al., 2024)

➤ What is it?

- Analytical technique that provide detail **information** about **molecule** through **fingerprint**.
- Non-destructive method with **high sensitivity**.


➤ Raman Spectrum

- Number of **peaks**, showing the **intensity** and **wavelength** **position** of the Raman scattered light.


Raman spectra of ethanol and methanol (Horiba, 2024)

Surface Enhanced Raman Spectroscopy (SERS) Principle

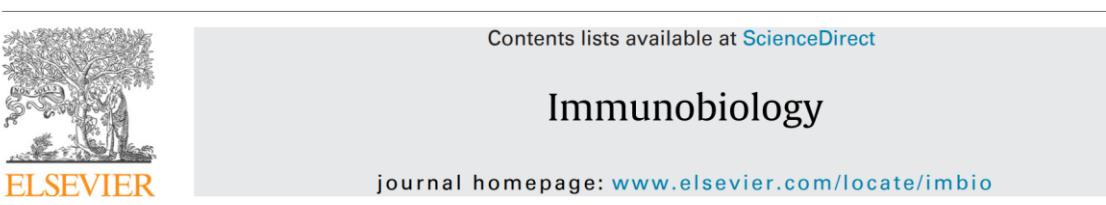
Comparison of the conventional Raman and SERS spectra of a serum sample

Source: <https://link.springer.com/article/10.1007/s10103-016-1976-x>

Schematization of the Surface-enhanced Raman Scattering (SERS) mechanism (Horiba, 2024)

➤ What is it?

- One of Raman techniques that **amplify** Raman spectra
- Provides all the advantages of Raman spectroscopy with **higher sensitivity**
- Enhanced up to 10^{10}


➤ How it works?

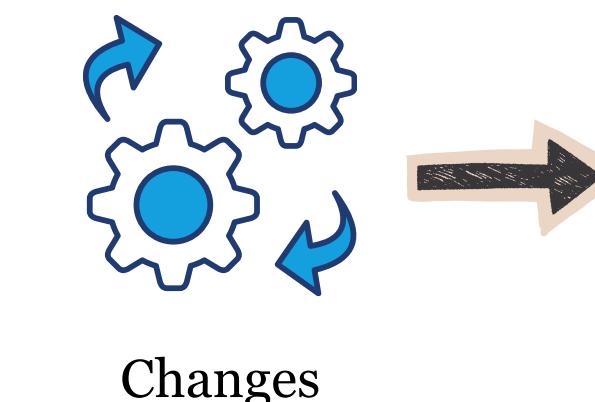
- Molecules adhered to metallic surfaces (gold, silver)
- Enhancement via plasmon resonance
- Localized surface plasmons resonates creating "hot spots."
- Hot spots enhance the local electric field near the metal surface

Immunosenescent CD4 + T cell (T helper cell)

Th Cells, CD4+:

- Activated by antigen recognition by MHC Class II molecule
- Coordinating immune response:
 - Cytokine secretion
- Develop long-lived memory cells

Aberrant NKG2D expression with IL-17 production of CD4+ T subsets in patients with type 2 diabetes


Wisitsak Phoksawat^{a,b}, Amonrat Jumnainsong^{b,c}, Naruemon Leelayuwat^d, Chanvit Leelayuwat^{b,c,*}

Predominant expression of the immunosenescent biomarker CD57 on CD4+ T cells and their subsets in the older people associating with the cardiovascular disease risk factors

Kanda Sornkayosit,¹ Chanvit Leelayuwat,² Amonrat Jumnainsong,² Patcharaporn Tippayawat,² Wipaporn Wongfieng,³ Rian Ka Praja,⁴ Sonwit Phanabamrung,² Laong-thip Raknarong,² Kanin Salao,⁵ Arnone Nithichanon,^{6,7} Suwit Chaisri,^{8,9} and Wisitsak Phoksawat^{6,7,*}

Th cells as
“conductor”

IL-17 and IFN- γ Productions by CD4+ T cells and T cell Subsets Expressing NKG2D Associated with the Number of Risk Factors for Cardiovascular Diseases

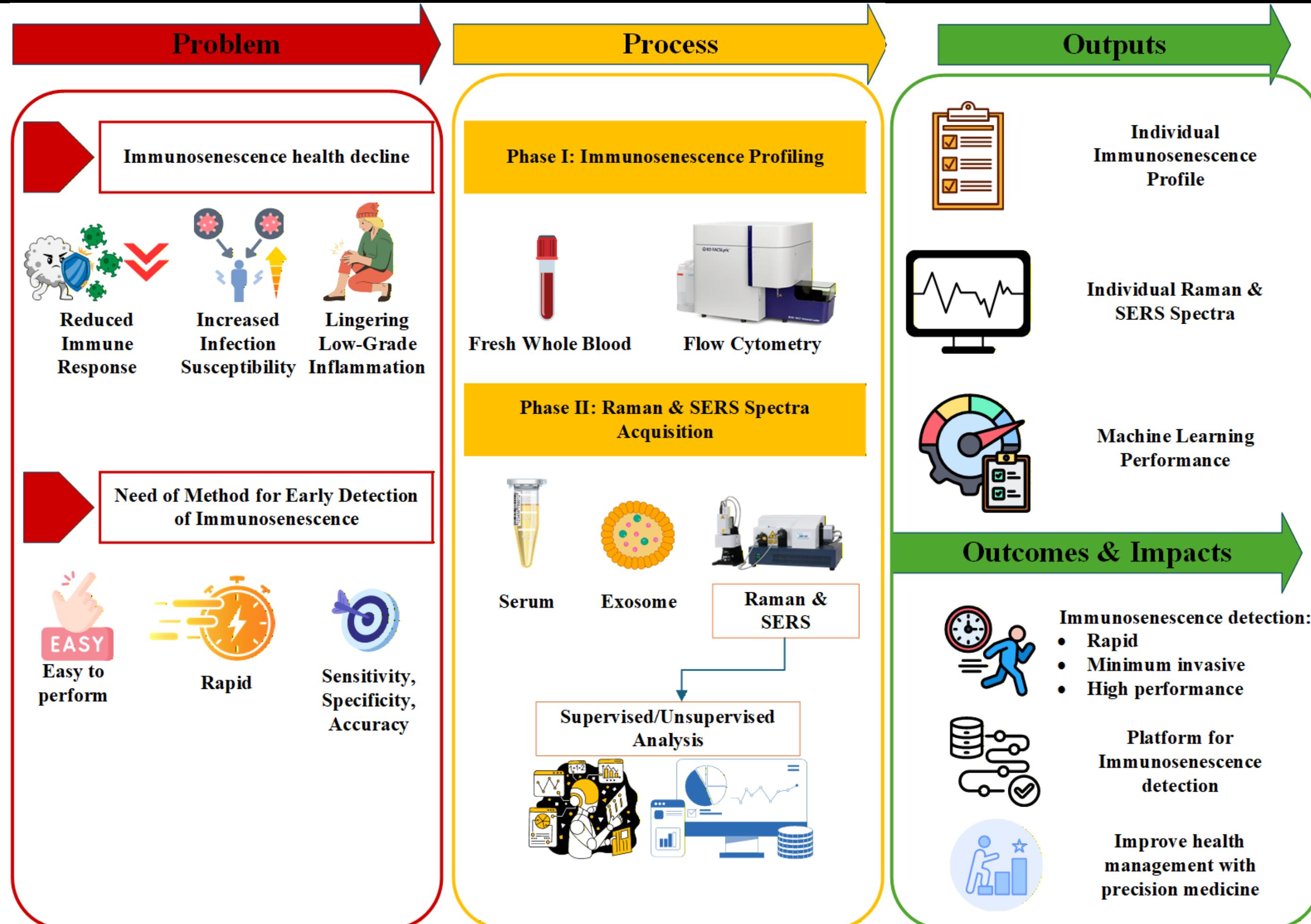
Wisitsak Phoksawat^{a,b,c}, Amonrat Jumnainsong^{b,c,d}, Kanda Sornkayosit^{a,b}, Kanoungnit Srisak^{a,b}, Nantarat Komanasin^{e,f}, Chanvit Leelayuwat^{b,c,d,*}

Open access

Short report

KLRG1 marks tumor-infiltrating CD4 T cell subsets associated with tumor progression and immunotherapy response

Casey R Ager^{1,2,3,4} Mingxuan Zhang,^{1,5} Matthew Chaimowitz,^{3,6} Shruti Bansal,^{3,6} Somnath Tagore,^{1,7} Aleksandar Obradovic,^{1,7} Collin Jugler,² Meri Rogava,^{1,3} Johannes C Melms,^{1,3} Patrick McCann,^{3,6} Catherine Spina,^{3,6} Charles G Drake,^{1,3,4,8,9} Matthew C Dallos,^{1,9,10} Benjamin Izar^{1,3,7,9,11}

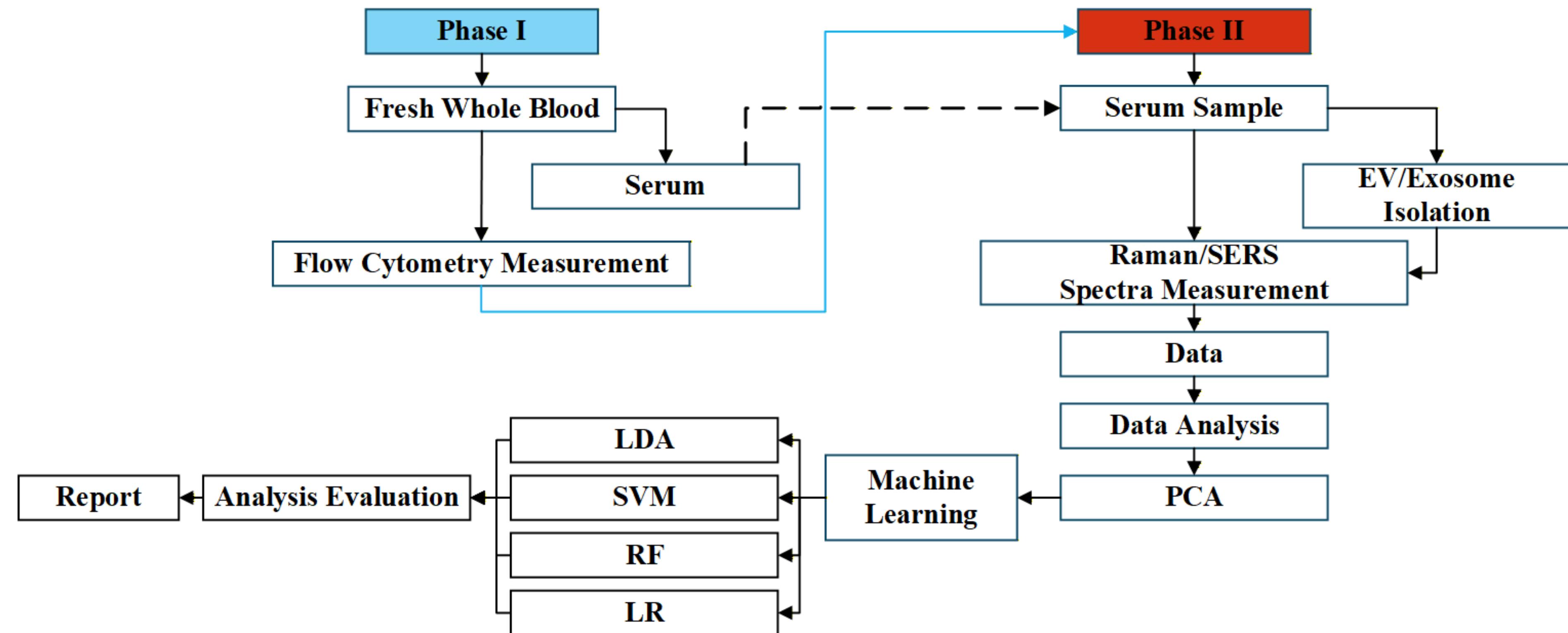

These cells are aberrant, undergo changes and affect the immune system function.

Expression: CD28- / CD57+ / KLRG1+(Immunosenescent); NKG2D+ (Pathogenic)

Cytokine: IL-17; IFN-Gamma

T cell dysfunction:
Progression of disease
**Importance for Early
Detection**

Conceptual Framework


General objective:

- To differentiate the immune profiling from serum and small biomolecule (extracellular vesicle, exosome) of individuals with high and low percentage of pathogenic / immunosenescent CD4+ T cells by using portable Raman spectroscopy/SERS

Hypothesis

Individuals with high and low percentage of pathogenic/immunosenescent CD4+ T cells are possible to be differentiated by analyzing its serum and exosome by using Raman spectroscopy/SERS

Study Design

Anticipated Outcomes

- Raman spectra of serum and extracellular vesicle/exosome from individual with high and low immunosenescent profile
- Raman spectroscopy/SERS as a new tool for detection of high and low profile of immunosenescence in the individual
- New platform to detect immunosenescent condition in clinical samples (serum, extracellular vesicle/exosome)

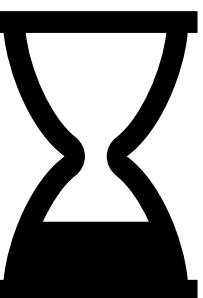
Flow Cytometry

Marker	Fluorescence
Anti-CD3	FITC
Anti-CD4	APC-Cy7
Anti-CD28	PE-Cy7
Anti-CD314/NKG2D	APC
Anti-CD57	PE
Anti-KLRG1	BV785
Anti-IL17	PerCP-Cy5
Anti-IFN γ	BV421

➤ Done:

- Training on principle and running samples
- Order KLRG-1 antibody
- Setting parameter for immunosenescent profiling

Immunosenescence panel:

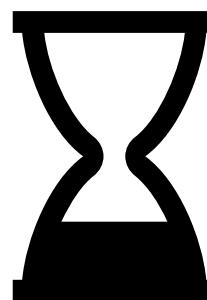

- CD57+
- CD28-
- KLRG-1

Cytokine panel:

- IFN-gamma
- IL-17

Pathogenic panel:

- NKG2D+


❖ To do:

- Setting up parameter for KLRG-1
- Data analysis training
- Optimization of the whole panel

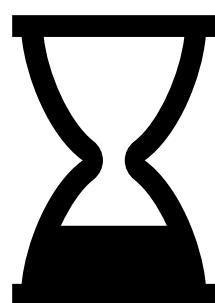
Raman Spectroscopy/SERS

Raman Spectroscopy (Bruker, Edinburh Instruments)

❖ To do:

- Sample trial (dry vs wet comparison), Raman & SERS
- Data analysis trial

➤ Done:


- Training on principle and instrument operation

Exosome Isolation

➤ Done:

- Searching for exosome isolation kit and comparison

Kit Name	Catalog	Brand	Input	Exosome Storage
Total Exosome Isolation Reagent (from serum)	4478360	Thermo	100uL serum	2°C to 8°C (1 week) ≤20°C for long-term storage
The Original ExoQuick,	EXOQ5A-1	Sysytem Biosciences	250uL serum	Use directly or freezing

❖ To do:

- Order isolation kit
- Trial exosome isolation

Conclusion

○ -

Future Work

- Training:
 - Flow Cytometry: Setting up parameter for KLRG-1 & Optimization whole panel
 - Raman Spectroscopy: Sample preparation, running & optimization
 - Exosome Isolation: Order kit & training exosome isolation
- Thesis Proposal
- EC application

Thesis Plan

#	Activities	2025		2026				2027	
		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
1	Coursework								
2	Literature review and planning								
3	Proposal Writing								
4	Proposal Examination								
5	EC Application								
Laboratory									
6	Specimen collection								
7	Flow Cytometry								
8	Raman & SERS								
9	Data Analysis								
Manuscript preparation									
10	Manuscript preparation & publication								
11	Thesis Defense								

Credit: 3

	Done
	On process
	Future work

Acknowledgement

Advisor

Asst. Prof. Wisitsak Phoksawat

1st Year Master Student

