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The objective of this lesson is to review fundamentals of heat 
and mass transfer and discuss:  

 
1. Conduction heat transfer with governing equations for heat conduction, 

concept of thermal conductivity with typical values, introduce the concept of 
heat transfer resistance to conduction 

2. Radiation heat transfer and present Planck’s law, Stefan-Boltzmann equation, 
expression for radiative exchange between surfaces and the concept of 
radiative heat transfer resistance 

3. Convection heat transfer, concept of hydrodynamic and thermal boundary 
layers, Newton’s law of cooling, convective heat transfer coefficient with 
typical values, correlations for heat transfer in forced convection, free 
convection and phase change, introduce various non-dimensional numbers 

4. Basics of mass transfer – Fick’s law and convective mass transfer 
5. Analogy between heat, momentum and mass transfer 
6. Multi-mode heat transfer, multi-layered walls, heat transfer networks, overall 

heat transfer coefficients 
7. Fundamentals of heat exchangers  

 
At the end of the lesson the student should be able to: 
 

1. Write basic equations for heat conduction and derive equations for simpler 
cases 

2. Write basic equations for radiation heat transfer, estimate radiative exchange 
between surfaces  

3. Write convection heat transfer equations, indicate typical convective heat 
transfer coefficients. Use correlations for estimating heat transfer in forced 
convection, free convection and phase change 

4. Express conductive, convective and radiative heat transfer rates in terms of 
potential and resistance. 

5. Write Fick’s law and convective mass transfer equation 
6. State analogy between heat, momentum and mass transfer 
7. Evaluate heat transfer during multi-mode heat transfer, through multi-layered 

walls etc. using heat transfer networks and the concept of overall heat transfer 
coefficient 

8. Perform basic calculation on heat exchangers 
 

 
7.1. Introduction 
 
Heat transfer is defined as energy-in-transit due to temperature difference. Heat 
transfer takes place whenever there is a temperature gradient within a system or 
whenever two systems at different temperatures are brought into thermal contact. 
Heat, which is energy-in-transit cannot be measured or observed directly, but the 
effects produced by it can be observed and measured. Since heat transfer involves 
transfer and/or conversion of energy, all heat transfer processes must obey the first 
and second laws of thermodynamics. However unlike thermodynamics, heat transfer 
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deals with systems not in thermal equilibrium and using the heat transfer laws it is 
possible to find the rate at which energy is transferred due to heat transfer. From the 
engineer’s point of view, estimating the rate of heat transfer is a key requirement. 
Refrigeration and air conditioning involves heat transfer, hence a good understanding 
of the fundamentals of heat transfer is a must for a student of refrigeration and air 
conditioning. This section deals with a brief review of heat transfer relevant to 
refrigeration and air conditioning. 
 
Generally heat transfer takes place in three different modes: conduction, convection 
and radiation. In most of the engineering problems heat transfer takes place by more 
than one mode simultaneously, i.e., these heat transfer problems are of multi-mode 
type.  
 
7.2. Heat transfer 
 
7.2.1. Conduction heat transfer: 
 
Conduction heat transfer takes place whenever a temperature gradient exists in a 
stationary medium. Conduction is one of the basic modes of heat transfer. On a 
microscopic level, conduction heat transfer is due to the elastic impact of molecules in 
fluids, due to molecular vibration and rotation about their lattice positions and due to 
free electron migration in solids. 
 
The fundamental law that governs conduction heat transfer is called Fourier’s law of 
heat conduction, it is an empirical statement based on experimental observations and 
is given by: 
 

dx
dT.A.kQx −=                                 (7.1) 

 
In the above equation, Qx is the rate of heat transfer by conduction in x-direction, 
(dT/dx) is the temperature gradient in x-direction, A is the cross-sectional area normal 
to the x-direction and k is a proportionality constant and is a property of the 
conduction medium, called thermal conductivity. The ‘-‘ sign in the above equation is 
a consequence of 2nd law of thermodynamics, which states that in spontaneous 
process heat must always flow from a high temperature to a low temperature (i.e., 
dT/dx must be negative). 
 
The thermal conductivity is an important property of the medium as it is equal to the 
conduction heat transfer per unit cross-sectional area per unit temperature gradient. 
Thermal conductivity of materials varies significantly. Generally it is very high for 
pure metals and low for non-metals. Thermal conductivity of solids is generally 
greater than that of fluids. Table 7.1 shows typical thermal conductivity values at 300 
K. Thermal conductivity of solids and liquids vary mainly with temperature, while 
thermal conductivity of gases depend on both temperature and pressure. For isotropic 
materials the value of thermal conductivity is same in all directions, while for 
anisotropic materials such as wood and graphite the value of thermal conductivity is 
different in different directions. In refrigeration and air conditioning high thermal 
conductivity materials are used in the construction of heat exchangers, while low 
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thermal conductivity materials are required for insulating refrigerant pipelines, 
refrigerated cabinets, building walls etc. 
 

          Table 7.1. Thermal conductivity values for various materials at 300 K 
 

Material Thermal conductivity 
(W/m K) 

Copper (pure) 399 
Gold (pure) 317 
Aluminum (pure) 237 
Iron (pure) 80.2 
Carbon steel (1 %) 43 
Stainless Steel (18/8) 15.1 
Glass 0.81 
Plastics  0.2 – 0.3 
Wood (shredded/cemented)  0.087 
Cork 0.039 
Water (liquid) 0.6 
Ethylene glycol (liquid) 0.26 
Hydrogen (gas) 0.18 
Benzene (liquid) 0.159 
Air 0.026 

 
 
General heat conduction equation: 
 
Fourier’s law of heat conduction shows that to estimate the heat transfer through a 
given medium of known thermal conductivity and cross-sectional area, one needs the 
spatial variation of temperature. In addition the temperature at any point in the 
medium may vary with time also. The spatial and temporal variations are obtained by 
solving the heat conduction equation. The heat conduction equation is obtained by 
applying first law of thermodynamics and Fourier’s law to an elemental control 
volume of the conducting medium. In rectangular coordinates, the general heat 
conduction equation for a conducting media with constant thermo-physical properties 
is given by: 
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In the above equation, 
pc

k
ρ

=α is a property of the media and is called as thermal 

diffusivity, qg is the rate of heat generation per unit volume inside the control volume 
and τ is the time.  
 
The general heat conduction equation given above can be written in a compact form 
using the Laplacian operator, ∇2 as: 
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If there is no heat generation inside the control volume, then the conduction equation 
becomes:  

T
τ
T1 2∇=
∂
∂

α
                                                     (7.4) 

 
If the heat transfer is steady and temperature does not vary with time, then the 
equation becomes: 

0T2 =∇                                                         (7.5) 
The above equation is known as Laplace equation.  
 
The solution of heat conduction equation along with suitable initial and boundary 
conditions gives temperature as a function of space and time, from which the 
temperature gradient and heat transfer rate can be obtained. For example for a simple 
case of one-dimensional, steady heat conduction with no heat generation (Fig. 7.1), 
the governing equation is given by: 
 
 
 
 
 

 
 
 
 

 
 

0
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2

2
=                                                 (7.6) 

 
The solution to the above equation with the specified boundary conditions is given by: 

L
xTTTT 121 )( −+=                                       (7.7) 

Tx=0 = T1 Tx=L = T2

qx qx

Fig. 7.1. Steady 1-D heat conduction 
x

 
and the heat transfer rate, Qx is given by: 
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where ΔT = T1-T2 and resistance to conduction heat transfer, Rcond = (L/kA) 

 
Similarly for one-dimensional, steady heat conduction heat transfer through a 
cylindrical wall the temperature profile and heat transfer rate are given by: 
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where r1, r2 and L are the inner and outer radii and length of the cylinder and 

LK2
)r/r(ln

R 12
cyl π
=  is the heat transfer resistance for the cylindrical wall. 

 
From the above discussion it is clear that the steady heat transfer rate by conduction 
can be expressed in terms of a potential for heat transfer (ΔT) and a resistance for heat 
transfer R, analogous to Ohm’s law for an electrical circuit. This analogy with 
electrical circuits is useful in dealing with heat transfer problems involving 
multiplayer heat conduction and multimode heat transfer.  
 
Temperature distribution and heat transfer rates by conduction for complicated, multi-
dimensional and transient cases can be obtained by solving the relevant heat 
conduction equation either by analytical methods or numerical methods. 
 
7.2.2. Radiation heat transfer: 
 
Radiation is another fundamental mode of heat transfer. Unlike conduction and 
convection, radiation heat transfer does not require a medium for transmission as 
energy transfer occurs due to the propagation of electromagnetic waves. A body due 
to its temperature emits electromagnetic radiation, and it is emitted at all 
temperatures. It is propagated with the speed of light (3 x 108 m/s) in a straight line in 
vacuum. Its speed decreases in a medium but it travels in a straight line in 
homogenous medium. The speed of light, c is equal to the product of wavelength λ 
and frequency ν, that is, 
 

                    λν=  c                                          (7.11)   
     

The wave length is expressed in Angstrom (1 Ao = 10-10 m) or micron (1 μm = 10-6m). 
Thermal radiation lies in the range of 0.1 to 100 μm, while visible light lies in the 
range of 0.35 to 0.75 μm. Propagation of thermal radiation takes place in the form of 
discrete quanta, each quantum having energy of 
 

ν=h  E                                                         (7.12) 
Where, h is Plank’s constant, h = 6.625 x 10-34 Js. The radiation energy is converted 
into heat when it strikes a body. 
 
The radiation energy emitted by a surface is obtained by integrating Planck’s equation 
over all the wavelengths. For a real surface the radiation energy given by Stefan-
Boltzmann’s law is: 

4
rQ =ε.σ.A.Ts                                                  (7.13) 

where Qr = Rate of thermal energy emission, W 
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           ε = Emissivity of the surface 
           σ = Stefan-Boltzmann’s constant, 5.669 X 10-8 W/m2.K4

           A = Surface area, m2

           Ts = Surface Temperature, K 
 
The emissivity is a property of the radiating surface and is defined as the emissive 
power (energy radiated by the body per unit area per unit time over all the 
wavelengths) of the surface to that of an ideal radiating surface. The ideal radiator is 
called as a “black body”, whose emissivity is 1. A black body is a hypothetical body 
that absorbs all the incident (all wave lengths) radiation. The term ‘black’ has nothing 
to do with black colour. A white coloured body can also absorb infrared radiation as 
much as a black coloured surface. A hollow enclosure with a small hole is an 
approximation to black body. Any radiation that enters through the hole is absorbed 
by multiple reflections within the cavity. The hole being small very small quantity of 
it escapes through the hole. 

 
The radiation heat exchange between any two surfaces 1 and 2 at different 
temperatures T1 and T2 is given by: 

4 4
1-2 ε A 1 2Q =σ.A.F F (T -T )                                         (7.14) 

where              Q1-2 = Radiation heat transfer between 1 and 2, W 
Fε  = Surface optical property factor 
FA = Geometric shape factor 
T1,T2 = Surface temperatures of 1 and 2, K 

 
Calculation of radiation heat transfer with known surface temperatures involves 
evaluation of factors Fε and FA.  
 
Analogous to Ohm’s law for conduction, one can introduce the concept of thermal 
resistance in radiation heat transfer problem by linearizing the above equation: 
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where the radiative heat transfer resistance Rrad is given by: 
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7.2.3. Convection Heat Transfer: 

 
Convection heat transfer takes place between a surface and a moving fluid, when they 
are at different temperatures. In a strict sense, convection is not a basic mode of heat 
transfer as the heat transfer from the surface to the fluid consists of two mechanisms 
operating simultaneously. The first one is energy transfer due to molecular motion 
(conduction) through a fluid layer adjacent to the surface, which remains stationary 
with respect to the solid surface due to no-slip condition. Superimposed upon this 
conductive mode is energy transfer by the macroscopic motion of fluid particles by 
virtue of an external force, which could be generated by a pump or fan (forced 
convection) or generated due to buoyancy, caused by density gradients.  
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When fluid flows over a surface, its velocity and temperature adjacent to the surface 
are same as that of the surface due to the no-slip condition. The velocity and 
temperature far away from the surface may remain unaffected. The region in which 
the velocity and temperature vary from that of the surface to that of the free stream are 
called as hydrodynamic and thermal boundary layers, respectively. Figure 7.2 show 
that fluid with free stream velocity U∞ flows over a flat plate. In the vicinity of the 
surface as shown in Figure 7.2, the velocity tends to vary from zero (when the surface 
is stationary) to its free stream value U∞. This happens in a narrow region whose 
thickness is of the order of ReL

-0.5 (ReL = U∞L/ν) where there is a sharp velocity 
gradient. This narrow region is called hydrodynamic boundary layer. In the 
hydrodynamic boundary layer region the inertial terms are of same order magnitude 
as the viscous terms. Similarly to the velocity gradient, there is a sharp temperature 
gradient in this vicinity of the surface if the temperature of the surface of the plate is 
different from that of the flow stream. This region is called thermal boundary layer, δt 
whose thickness is of the order of (ReLPr)-0.5, where Pr is the Prandtl number, given 
by: 
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In the expression for Prandtl number, all the properties refer to the flowing fluid. 
 

 
Fig. 7.2. Velocity distribution of flow over a flat plate 

 
In the thermal boundary layer region, the conduction terms are of same order of 
magnitude as the convection terms.  

 
The momentum transfer is related to kinematic viscosity ν while the diffusion of heat 
is related to thermal diffusivity α hence the ratio of thermal boundary layer to viscous 
boundary layer is related to the ratio ν/α, Prandtl number. From the expressions for 
boundary layer thickness it can be seen that the ratio of thermal boundary layer 
thickness to the viscous boundary layer thickness depends upon Prandtl number. For 
large Prandtl numbers δt < δ and for small Prandtl numbers, δt > δ. It can also be seen 
that as the Reynolds number increases, the boundary layers become narrow, the 
temperature gradient becomes large and the heat transfer rate increases.  
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Since the heat transfer from the surface is by molecular conduction, it depends upon 
the temperature gradient in the fluid in the immediate vicinity of the surface, i.e. 
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Since temperature difference has been recognized as the potential for heat transfer it is 
convenient to express convective heat transfer rate as proportional to it, i.e. 
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The above equation defines the convective heat transfer coefficient hc. This equation 

is also referred to as Newton’s law of cooling. From the above 
equation it can be seen that the convective heat transfer coefficient h
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The above equation suggests that the convective heat transfer coefficient (hence heat 

transfer by convection) depends on the temperature gradient 
0yy
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surface in addition to the thermal conductivity of the fluid and the temperature 
difference. The temperature gradient near the wall depends on the rate at which the 
fluid near the wall can transport energy into the mainstream. Thus the temperature 
gradient depends on the flow field, with higher velocities able to pressure sharper 
temperature gradients and hence higher heat transfer rates. Thus determination of 
convection heat transfer requires the application of laws of fluid mechanics in 
addition to the laws of heat transfer. 
 
Table 7.2 Typical order-of magnitude values of convective heat transfer coefficients 
 
Type of fluid and flow Convective heat transfer coefficient 

hc, (W/m2 K) 
Air, free convection 6 – 30 
Water, free convection 20 – 100 
Air or superheated steam, forced convection 30 – 300 
Oil, forced convection 60 – 1800 
Water, forced convection 300 – 18000 
Synthetic refrigerants, boiling 500 - 3000 
Water, boiling  3000 – 60000 
Synthetic refrigerants, condensing 1500 - 5000 
Steam, condensing 6000 – 120000 
 
 
Traditionally, from the manner in which the convection heat transfer rate is defined, 
evaluating the convective heat transfer coefficient has become the main objective of 
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the problem. The convective heat transfer coefficient can vary widely depending upon 
the type of fluid and flow field and temperature difference. Table 7.2 shows typical 
order-of-magnitude values of convective heat transfer coefficients for different 
conditions. 
 
Convective heat transfer resistance: 
 
Similar to conduction and radiation, convective heat transfer rate can be written in 
terms of a potential and resistance, i.e., 
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where the convective heat transfer resistance, Rconv = 1/(hcA) 
 
Determination of convective heat transfer coefficient: 
 
Evaluation of convective heat transfer coefficient is difficult as the physical 
phenomenon is quite complex. Analytically, it can be determined by solving the mass, 
momentum and energy equations. However, analytical solutions are available only for 
very simple situations, hence most of the convection heat transfer data is obtained 
through careful experiments, and the equations suggested for convective heat transfer 
coefficients are mostly empirical. Since the equations are of empirical nature, each 
equation is applicable to specific cases. Generalization has been made possible to 
some extent by using several non-dimensional numbers such as Reynolds number, 
Prandtl number, Nusselt number, Grashoff number, Rayleigh number etc. Some of the 
most important and commonly used correlations are given below: 
 
Heat transfer coefficient inside tubes, ducts etc.: 
 
When a fluid flows through a conduit such as a tube, the fluid flow and heat transfer 
characteristics at the entrance region will be different from the rest of the tube. Flow 
in the entrance region is called as developing flow as the boundary layers form and 
develop in this region. The length of the entrance region depends upon the type of 
flow, type of surface, type of fluid etc. The region beyond this entrance region is 
known as fully developed region as the boundary layers fill the entire conduit and the 
velocity and temperature profiles remains essentially unchanged. In general, the 
entrance effects are important only in short tubes and ducts. Correlations are available 
in literature for both entrance as well as fully developed regions. In most of the 
practical applications the flow will be generally fully developed as the lengths used 
are large. The following are some important correlations applicable to fully developed 
flows: 
 
a) Fully developed laminar flow inside tubes (internal diameter D): 
 
Constant wall temperature condition: 
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Constant wall heat flux condition: 
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b) Fully developed turbulent flow inside tubes (internal diameter D): 
 
Dittus-Boelter Equation: 
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where n = 0.4 for heating (Tw > Tf) and n = 0.3 for cooling (Tw < Tf).  
 
The Dittus-Boelter equation is valid for smooth tubes of length L, with 0.7 < Pr < 160, 
ReD > 10000 and (L/D) > 60. 
 
Petukhov equation: This equation is more accurate than Dittus-Boelter and is 
applicable to rough tubes also. It is given by: 
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where n = 0.11 for heating with uniform wall temperature 
 n = 0.25 for cooling with uniform wall temperature, and 
 n = 0 for uniform wall heat flux or for gases 
 
‘f’ in Petukhov equation is the friction factor, which needs to be obtained using 
suitable correlations for smooth or rough tubes. μb and μw are the dynamic viscosities 
of the fluid evaluated at bulk fluid temperature and wall temperatures respectively. 
Petukhov equation is valid for the following conditions: 
 

104 < ReD < 5 X 106

0.5 < Pr < 200  with 5 percent error 

0.5 < Pr < 2000  with 10 percent error 

0.08 < (μb/μw) < 40 
 

c) Laminar flow over a horizontal, flat plate (Rex < 5 X 105): 
 
Constant wall temperature: 
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Constant wall heat flux: 
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The average Nusselt number is obtained by integrating local Nusselt number from 0 
to L and dividing by L 
 
d) Turbulent flow over horizontal, flat plate (Rex  > 5 X 105): 
 
Constant wall temperature: 
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e) Free convection over hot, vertical flat plates and cylinders: 
 
Constant wall temperature: 
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where c and n are 0.59 and ¼ for laminar flow (104 < GrL.Pr < 109) and 0.10 and ⅓ 
for turbulent flow (109 < GrL.Pr < 1013) 
 
In the above equation, GrL is the average Grashoff number given by: 
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where g is the acceleration due to gravity, β is volumetric coefficient of thermal 
expansion, Tw and T∞ are the plate and the free stream fluid temperatures, respectively 
and ν is the kinematic viscosity. 
 
Constant wall heat flux, qW: 
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f) Free convection over horizontal flat plates: 
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The values of c and n are given in Table 7.3 for different orientations and flow 
regimes. 
 

Table 7.3 Values of c and n 
 

Orientation of plate Range of GrLPr c n Flow regime 
105 to 2 X 107 0.54 1/4 Laminar Hot surface facing up or cold 

surface facing down, constant Tw 2 X 107 to 3 X 1010 0.14 1/3 Turbulent 
Hot surface facing down or cold 
surface facing up, constant Tw

3 X 105 to 3 X 1010 0.27 1/4 Laminar 

< 2 X 108 0.13 1/3  Hot surface facing up, constant 
qw 5 X 108 to 1011 0.16 1/3  
Hot surface facing down, 
constant qw

106 to 1011 0.58 1/5  

 
In the above free convection equations, the fluid properties have to be evaluated at a 
mean temperature defined as Tm = Tw−0.25(Tw-T∞). 
 
 
g) Convection heat transfer with phase change: 
 
Filmwise condensation over horizontal tubes of outer diameter Do: 
 
The heat transfer coefficient for film-wise condensation is given by Nusselt’s theory 
that assumes the vapour to be still and at saturation temperature. The mean 
condensation heat transfer coefficient, hm is given by: 
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where, subscript f refers to saturated liquid state, N refers to number of tubes above 
each other in a column and ΔT = Tr – Two , Tr and Two  being refrigerant and outside 
wall temperatures respectively. 
 
Filmwise condensation over a vertical plate of length L: 
 
The mean condensation heat transfer coefficient, hm is given by, 
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Nucleate pool boiling of refrigerants inside a shell: 
 

3to2
r TCh Δ=                                                      (7.35) 

 
where ΔT is the temperature difference between surface and boiling fluid and C is a 
constant that depends on the nature of refrigerant etc. 
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The correlations for convective heat transfer coefficients given above are only few 
examples of some of the common situations. A large number of correlations are 
available for almost all commonly encountered convection problems. The reader 
should refer to standard text books on heat transfer for further details. 
 
 
7.3. Fundamentals of Mass transfer 
 
When a system contains two or more components whose concentration vary from 
point to point, there is a natural tendency for mass to be transferred, minimizing the 
concentration differences within the system. The transport of one constituent from a 
region of higher concentration to that of lower concentration is called mass transfer.  
A common example of mass transfer is drying of a wet surface exposed to unsaturated 
air. Refrigeration and air conditioning deal with processes that involve mass transfer. 
Some basic laws of mass transfer relevant to refrigeration and air conditioning are 
discussed below. 
 
7.3.1. Fick’s Law of Diffusion: 
 
This law deals with transfer of mass within a medium due to difference in 
concentration between various parts of it. This is very similar to Fourier’s law of heat 
conduction as the mass transport is also by molecular diffusion processes. According 
to this law, rate of diffusion of component A (kg/s) is proportional to the 
concentration gradient and the area of mass transfer, i.e. 

Am

x
c

ADm A
ABA d

d
−=                                              (7.36) 

 
where, DAB is called diffusion coefficient for component A through component B, and 
it has the units of m2/s  just like those of thermal diffusivity α and the kinematic 
viscosity of fluid ν for momentum transfer.  
 
7.3.2. Convective mass transfer: 
 
Mass transfer due to convection involves transfer of mass between a moving fluid and 
a surface or between two relatively immiscible moving fluids. Similar to convective 
heat transfer, this mode of mass transfer depends on the transport properties as well as 
the dynamic characteristics of the flow field. Similar to Newton’s law for convective 
heat transfer, he convective mass transfer equation can be written as: 
 

Am cAhm Δ=                                            (7.37) 
 
where hm is the convective mass transfer coefficient and ΔcA is the difference between 
the boundary surface concentration and the average concentration of fluid stream of 
the diffusing species A. 
 
Similar to convective heat transfer, convective mass transfer coefficient depends on 
the type of flow, i.e., laminar or turbulent and forced or free. In general the mass 
transfer coefficient is a function of the system geometry, fluid and flow properties and 
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the concentration difference. Similar to momentum and heat transfers, concentration 
boundary layers develop whenever mass transfer takes place between a surface and a 
fluid. This suggests analogies between mass, momentum and energy transfers. In 
convective mass transfer the non-dimensional numbers corresponding to Prandtl and 
Nusselt numbers of convective heat transfer are called as Schmidt and Sherwood 
numbers. These are defined as: 

D
Lh

Sh,numberSherwood m
L =                              (7.38) 

D
Sc,numberSchmidt ν

=                            (7.39) 

 
where hm is the convective mass transfer coefficient, D is the diffusivity and ν is the 
kinematic viscosity. 
 
The general convective mass transfer correlations relate the Sherwood number to 
Reynolds and Schmidt number. 
 
7.4. Analogy between heat, mass and momentum transfer 
 
7.4.1. Reynolds and Colburn Analogies   
 
The boundary layer equations for momentum for a flat plate are exactly same as those 
for energy equation if Prandtl number, Pr = 1, pressure gradient is zero and viscous 
dissipation is negligible, there are no heat sources and for similar boundary 
conditions. Hence, the solution for non-dimensional velocity and temperature are also 
same. It can be shown that for such a case, 

 

c

p

hNu fStanton number, St = = =
Re.Pr ρVc 2

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                   (7.40) 

 
where f is the friction factor and St is Stanton Number. The above equation, which 
relates heat and momentum transfers is known as Reynolds analogy.  
 
To account for the variation in Prandtl number in the range of 0.6 to 50, the Reynolds 
analogy is modified resulting in Colburn analogy, which is stated as follows. 

2
fPr.St 3/2 =                                               (7.41) 

 
7.4.2. Analogy between heat, mass and momentum transfer 
 
The role that thermal diffusivity plays in the energy equation is played by diffusivity 
D in the mass transfer equation. Therefore, the analogy between momentum and mass 
transfer for a flat plate will yield: 
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To account for values of Schmidt number different from one, following correlation is 
introduced, 

2Re
32 fSc

.Sc
Sh / =                                            (7.43) 

 
Comparing the equations relating heat and momentum transfer with heat and mass 
transfer, it can be shown that, 
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                                         (7.44) 

 
This analogy is followed in most of the chemical engineering literature and α/D is 
referred to as Lewis number. In air-conditioning calculations, for convenience Lewis 
number is defined as: 

3/2

D
Le,numberLewis ⎟

⎠
⎞

⎜
⎝
⎛ α=                                  (7.45) 

 
The above analogies are very useful as by applying them it is possible to find heat 
transfer coefficient if friction factor is known and mass transfer coefficient can be 
calculated from the knowledge of heat transfer coefficient. 
 
7.5. Multimode heat transfer 
 
In most of the practical heat transfer problems heat transfer occurs due to more than 
one mechanism. Using the concept of thermal resistance developed earlier, it is 
possible to analyze steady state, multimode heat transfer problems in a simple 
manner, similar to electrical networks. An example of this is transfer of heat from 
outside to the interiors of an air conditioned space. Normally, the walls of the air 
conditioned rooms are made up of different layers having different heat transfer 
properties. Once again the concept of thermal resistance is useful in analyzing the heat 
transfer through multilayered walls. The example given below illustrates these 
principles. 
 
Multimode heat transfer through a building wall: 
The schematic of a multimode heat transfer building wall is shown in Fig. 7.3. From 
the figure it can be seen that: 

1 2
1-2

total

(T -T )Q =
R                                                     (7.46a) 
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    (7.46b) 

( ) ( ) ( )total 2 w 1R = R + R + R                           (7.46c) 
 

1-2 1 2Q =UA(T -T )                                       (7.46d) 
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total

1where, overall heat transfer coefficient, U =
R A  

 

 
Fig. 7.3. Schematic of a multimode heat transfer building wall 

 
omposite cylinders: 

he concept of resistance networks is also useful in solving problems involving 
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composite cylinders. A common example of this is steady state heat transfer through 
an insulated pipe with a fluid flowing inside. Since it is not possible to perfectly 
insulate the pipe, heat transfer takes place between the surroundings and the inner 
fluid when they are at different temperatures. For such cases the heat transfer rate is 
given by: 
 

)TT(AUQ oioo −=                            (7.47) 
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where Ao is the outer surface area of the composite cylinder and Uo is the overall heat 
transfer coefficient with respect to the outer area given by: 
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)/r(rln

Ah
1

AU
1

+++=
ππ

                 (7.48) 

 
In the above equation, hi and ho are the inner and outer convective heat transfer 
coefficients, Ai and Ao are the inner and outer surface areas of the composite cylinder, 
km and kin are the thermal conductivity of tube wall and insulation, L is the length of 
the cylinder, r1, r2 and r3 are the inner and outer radii of the tube and outer radius of 
the insulation respectively. Additional heat transfer resistance has to be added if there 
is any scale formation on the tube wall surface due to fouling.  

 

To, ho

Ti, hi

Fluid in Fluid out

Insulation 

Tube wall

Fig. 7.4. Composite cylindrical tube 

7.6. Heat exchangers: 
 
A heat exchanger is a device in which heat is transferred from one fluid stream to 
another across a solid surface. Thus a typical heat exchanger involves both conduction 
and convection heat transfers. A wide variety of heat exchangers are extensively used 
in refrigeration and air conditioning. In most of the cases the heat exchangers operate 
in a steady state, hence the concept of thermal resistance and overall heat transfer 
coefficients can be used very conveniently. In general, the temperatures of the fluid 
streams may vary along the length of the heat exchanger. To take care of the 
temperature variation, the concept of Log Mean Temperature Difference (LMTD) is 
introduced in the design of heat exchangers. It is defined as: 
 

)T/T(ln
TT

LMTD
21

21

ΔΔ
Δ−Δ

=                 (7.49) 

 
where ΔT1 and ΔT2 are the temperature difference between the hot and cold fluid 
streams at two inlet and outlet of the heat exchangers. 
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If we assume that the overall heat transfer coefficient does not vary along the length, 
and specific heats of the fluids remain constant, then the heat transfer rate is given by: 
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                 (7.50) 

 
the above equation is valid for both parallel flow (both the fluids flow in the same 
direction) or counterflow (fluids flow in opposite directions) type heat exchangers. 
For other types such as cross-flow, the equation is modified by including a 
multiplying factor. The design aspects of heat exchangers used in refrigeration and air 
conditioning will be discussed in later chapters.  
 
 
Questions: 
 
1. Obtain an analytical expression for temperature distribution for a plane wall having 
uniform surface temperatures of T1 and T2 at x1 and x2 respectively. It may be 
mentioned that the thermal conductivity k = k0 (1+bT), where b is a constant. 
(Solution) 
 
2. A cold storage room has walls made of 0.3 m of brick on outside followed by 0.1 m 
of plastic foam and a final layer of 5 cm of wood. The thermal conductivities of brick, 
foam and wood are 1, 0.02 and 0.2 W/mK respectively. The internal and external heat 
transfer coefficients are 40 and 20 W/m2K. The outside and inside temperatures are 
400C and -100C. Determine the rate of cooling required to maintain the temperature of 
the room at -100C and the temperature of the inside surface of the brick given that the 
total wall area is 100 m2. (Solution) 
 
3. A steel pipe of negligible thickness and having a diameter of 20 cm has hot air at 
1000C flowing through it. The pipe is covered with two layers of insulating materials 
each having a thickness of 10 cm and having thermal conductivities of 0.2 W/mK and 
0.4 W/mK. The inside and outside heat transfer coefficients are 100 and 50 W/m2K 
respectively. The atmosphere is at 350C. Calculate the rate of heat loss from a 100 m 
long pipe. (Solution) 
 
4. Water flows inside a pipe having a diameter of 10 cm with a velocity of 1 m/s. the 
pipe is 5 m long. Calculate the heat transfer coefficient if the mean water temperature 
is at 400C and the wall is isothermal at 800C. (Solution)  
 
5. A long rod having a diameter of 30 mm is to be heated from 4000C to 6000C. The 
material of the rod has a density of 8000 kg/m3 and specific heat of 400 J/kgK. It is 
placed concentrically inside a long cylindrical furnace having an internal diameter of 
150 mm. The inner side of the furnace is at a temperature of 11000C and has an 
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emissivity of 0.7. If the surface of the rod has an emissivity of 0.5, find the time 
required to heat the rod. (Solution) 
 
6. Air flows over a flat plate of length 0.3 m at a constant temperature. The velocity of 
air at a distance far off from the surface of the plate is 50 m/s. Calculate the average 
heat transfer coefficient from the surface considering separate laminar and turbulent 
sections and compare it with the result obtained by assuming fully turbulent flow. 
(Solution) 
 
Note: The local Nusselt number for laminar and turbulent flows is given by: 

1/2 1/3
x x

0.8 1/3
x x

laminar : Nu = 0.331Re Pr

turbulent: Nu  = 0.0288Re Pr
 

Transition occurs at . The forced convection boundary layer flow 
begins as laminar and then becomes turbulent. Take the properties of air to 
be , , k = 0.03 W/mK and Pr = 0.7. 

5
x.transRe = 2 X 10

3ρ = 1.1 kg/m -5μ = 1.7 X 10  kg/m s
 
7. A vertical tube having a diameter of 80 mm and 1.5 m in length has a surface 
temperature of 800C. Water flows inside the tube while saturated steam at 2 bar 
condenses outside. Calculate the heat transfer coefficient. (Solution) 
 
Note: Properties of saturated steam at 2 bar: , , 

; For liquid phase at 100

0
satT  = 120.2 C fgh  = 2202 kJ/kgK

3ρ = 1.129 kg/m 0C: , , 

 and Pr = 1.73. 

3
Lρ  = 958 kg/m pc  = 4129 J/kgK

-3
Lμ  = 0.279X10  kg/m s

 
8. Air at 300 K and at atmospheric pressure flows at a mean velocity of 50 m/s over a 
flat plate 1 m long. Assuming the concentration of vapour in air to be negligible, 
calculate the mass transfer coefficient of water vapour from the plate into the air. The 
diffusion of water vapour into air is 0.5 X 10-4 m2/s. The Colburn j-factor for heat 
transfer coefficient is given by jH=0.0296 Re -0.2. (Solution) 
 
9. An oil cooler has to cool oil flowing at 20 kg/min from 1000C to 500C. The specific 
heat of the oil is 2000 J/kg K. Water with similar flow rate at an ambient temperature 
of 350C is used to cool the oil. Should we use a parallel flow or a counter flow heat 
exchanger? Calculate the surface area of the heat exchanger if the external heat 
transfer coefficient is 100 W/m2K. (Solution) 
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