# Genetic information Part 2

วรฉัตร เลิศอิทธิพร

ภาควิชาชีวเคมี

คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

#### Outline

- DNA replication
- RNA synthesis
  - Initiation of RNA synthesis
  - Termination of RNA synthesis
  - Eukaryote RNA Processing
- Protein synthesis
  - Initiation
  - Elongation
  - Termination
  - Post-translational Modification

### RNA synthesis

(Transcription)

#### Gene expression



RNA: storage, transfer, catalysis



#### Organization of coding information



#### Ingredients of RNA synthesis

- DNA template
- ribonucleoside triphosphate (NTP) (ATP, GTP, CTP, UTP)
- DNA dependent RNA polymerase
- Mg2+, Mn2+
- No primer

$$(NMP)_n + NTP \longrightarrow (NMP)_{n+1} + PP_i$$
  
RNA Lengthened RNA

#### Transcription (RNA synthesis)

- Initiated at promoter sites on the DNA template
- Consensus / conserved sequence

### Transcription is initiated at promoter sites on the DNA template



#### Prokaryotic promoter site:

|              | -35        | -10         | +1            |
|--------------|------------|-------------|---------------|
| DNA template | TTGACA     | TATAAT      |               |
|              | -35 Region | Pribnow box | Start of      |
|              |            |             | transcription |

#### Eukaryotic promoter site:

|              | -75       | -25           | +1            |
|--------------|-----------|---------------|---------------|
| DNA template | GGNCAATCT | TATAAA        |               |
|              | CAAT box  | TATA          | Start of      |
|              |           | (Hogness) box | transcription |

## DNA-dependent RNA polymerase (RNA polymerase)

- No proofreading
- Don't need primer
- 5 subunits  $(\alpha, \beta, \beta', \omega, \sigma)$



#### Initiation of RNA synthesis

- The sequence of RNA is complementary with DNA template, anti-sense, non-coding
- The sequence of RNA is similar to non-template, sense or coding strand



#### Initiation of RNA synthesis

- Promoter DNA is stably bound
- Require σ factor
- -10 region to position +2 or
  +3—is then unwound to form an open complex
- Rifampicin inhibit σ factor



#### Initiation of RNA synthesis

- Sigma subunit (factor) of RNA polymerase binds to promoter located upstream from +1 of structural genes
- Once the first 7 or 10 nucleotides of a new RNA are synthesized, the σ subunit is released
- The polymerase leaves the promoter and becomes committed to elongation of the RNA
- Actinomycin D binds DNA and preventing elongation of RNA chain



#### Termination of RNA synthesis

- Termination of RNA synthesis occurred by 2 ways,
- **p** dependent : Rho protein binds act as helicase to push away the RNA polymerase
- rho independent: hairpin loop form at the end and push the enzyme away

#### ρ (Rho) dependent



#### **P** (Rho) independent



#### Eukaryote RNA Polymerase

- Eukaryote has more than 1 RNA Polymerase and regulation is more complex, requires binding of several regulatory proteins
- Pol I: synthesize pre-ribosomal RNA 18S, 5.8S 28S
   rRNAs
- Pol II: synthesize mRNAs, 12 sub-unit
- Pol III: synthesize tRNAs, 5S rRNA and small specialized RNA

#### Eukaryote RNA Polymerase



- Methylation at 5' end and 7-methylguanosine make caped RNA binds to a protein
- Poly A binds to another protein and linked like ring also by another protein to protectmRNA from degradation





- Splicing: the non-coding sequences (introns) were removed and left coding sequences (exons) to join as matured mRNA
- This matured-mRNA will get into cytoplasm for translation into a protein



© 2008 Encyclopædia Britannica, Inc.

Splicing : by enzymes or non-enzymes





Figure 26-19
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

#### Alternative splicing

Eukaryote mRNA can transcribed into more than 1
 type of matured-RNA → Isoforms



## Template and nontemplate (coding) DNA strands

(5') CGCTATAGCGTTT(3')

DNA nontemplate (coding) strand

(3') GCGATATCGCAAA(5')

DNA template strand

(5') CGCUAUAGCGUUU(3')

RNA transcript

#### Summary

- A gene composted of control region (promoter) and a structural gene (coding sequence complementary with the DNA template).
- mRNA is synthesized by binding of RNA polymerase to the promoter and produce RNA with sequence complementary to template and similar (except U) to sense strand.
- Processing steps (Capping and tailing + splicing) are required for eukaryote for fully function of RNA (matured mRNA).
- Error in splicing steps is common to cause diseases.

### Protein synthesis

Translation and

Posttranslational Modifications



#### Complexity of protein

- Proteins is the end of the information pathway
- 20 amino acids
- NH₂-terminal
   → COOH-terminal
- Different levels of protein in different cells, organ, cell stages etc. can be different
- Proteins come in different isoforms, are churned through metabolic and degradative pathways, are alternatively spliced, and often link with one another to form complexes made up of multiple proteins

#### Ingredients of protein synthesis

- L-amino acid
- t-RNA
- Genetic code
- Aminoacyl-tRNA synthetase
- ribosome

#### The Genetic Code

- How 4 letters genetic alphabet (A, T, C, G) combined to get 20 amino acids
- A two nucleotide code :  $4 \times 4 = 16$  possible combination is not enough
- Sets of three nucleotides : would be sufficient (4 x 4 x 4 = 64 possible combinations

#### The Genetic Code

• 1961, Matthaei and Nirenberg combined the synthetic RNA poly-U and see what amino acids will be for it.





Reading frame

#### The rules of the Genetic Code

- 1. Triplet code: read 3 at a time
- 2. Non-overlapping, commaless

#### Rules of the Genetic Code

- 3. Degenerated code but non ambiguous: 1 amino acid (aa) has more than 1 codon. There are some aa that have just 1
- 4. Universal genetic code: bacteria, plant, human are all using this code







Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

มีกรดอะมิโน 2 ชนิด (methionine และ tryptophan) ที่มีรหัสพันธุกรรมรหัสเดียว

#### Amino acid



### Transfer RNA (tRNA)

- Clover leaf shape
- tRNA: 3 bases complementary with codon (on mRNA): called anticodon
- Wobble position





## Wobble position

- Wobble position : bases at 3' of codon and bases at 5' of anticodon
- wobble base tRNA 1 ชนิด จับกับ codon ของ mRNA ได้มากกว่า
   1 codon

| 5' base of anticodon | 3' base of codon |
|----------------------|------------------|
| С                    | G                |
| A                    | U                |
| U                    | A or G           |
| G                    | C or U           |
| I                    | U or C or A      |

## Aminoacyl-tRNA synthetase

- Enzyme that attaches the appropriate amino acid onto its tRNA (esterification of a specific cognate amino acid to one of all its compatible cognate tRNAs)
- Sometimes called"charging" or "loading" the tRNA with the amino acid
- ขบวนการนี้อาศัย  $Mg^{2+}$  เป็น cofactor และต้องการ ATP (2 ATP)
- Amino Acid + tRNA + ATP → Aminoacyl-tRNA + AMP + PPi
- 20 different aminoacyl-tRNA synthetases
- α -COOH group ของ กรดอะมิโนกับ 3'-OH group ของ tRNA

## Charged tRNA



#### The Genetic Code

- Arg, Leu, Ser : have 6 codons
- Met, Trp have only 1 codon
- One tRNA, carry the same aa, can bind to more than 1 codon by Wobble paring hypothesis
- This way, 20 tRNA with 20 aa can pair with 61 codons.

#### Ribosome

- Site of biological protein synthesis (translation)
- 2 subunits (small & large subunit)
- Small sub unit: binds to a larger subunit and the mRNA pattern
- Large subunit: binds to the tRNA, the amino acids, and the smaller subunit
  - P site : เป็นบริเวณที่เกิดสาย polypeptide
  - A site : เป็นบริเวณที่ aa-tRNA มาเกาะ

- Prokaryotic ribosome : 705 (505 & 305)
- Eukaryotic ribosome : 80S (60S & 40S)

# Steps in protein synthesis at the Initiation step

- 1. 30S ribosome uses its 16SRNA to bind to Shine-Dalgarno Sequence (SD) on 5' end of mRNA.
  - Binding of SD-ribosome Fixed the reading frame of protein synthesis
- 2. Next to the SD is the first codon, AUG, that code for Methionine. fMet-tRNA binds to AUG and the large ribosome subunit come

# Steps in protein synthesis at the Initiation step



# Steps in protein synthesis at the Initiation step



## Elongation step

- Ribosome moves along the mRNA
- tRNA with anti-codon complementary with the next codon comes with aa. Peptide bond is formed between fMet and the next aa and
- tRNA without aa is leaving



#### **Termination**

- Ribosome encounters termination codons (UAG, UAA or UGA)
   Translation of a protein ends
- Releasing factors: come to bind with the stop codon and all ribosome separated.
- RF-1 : UAA, UAG
- RF-2 : UAA, UGA
- RF-3 : GTP



## Polyribosome (polysome)

 After protein synthesis initiation : new ribosome comes and binds the same mRNA for starting new protein synthesis initiation

Polyribosome cell can speed up the rate of protein synthesis



## Polycystronic / monocystronic mRNA

- Prokaryote organized their gene that function together to be under the same controller, called operon. One mRNA translates to more than one Protein (polycystronic mRNA)
- Eukaryote produce one mRNA that will Translate into one protein (monocystronic)



#### Post-translational Modification

- Generally enzymatic modification of proteins during or after protein biosynthesis called post-translational modification.
- Correct folding / chemical modification for biological active function
- Phosphorylation (add phosphate)
- Endoplasmic reticulum (ER) add oligosaccharides to protein (glycoprotein)
- Disulfide linkage, substitute groups exp. acetylation, methylation, ubiquitylation, hydroxylation etc.

#### Insulin: Post-translational modification



## Protein translocation (protein targeting)

- 1. Post-translational translocation
- 2. Cotranslational translocation



### Glycoprotein and secreted protein



Endoplasmic reticulum

## Proteins such as neurotransmitter will be secreted out of the cell



## Inhibitors of protein synthesis

- Affect on prokaryotes : streptomycin, tetracycline, chloramphenicol & erythromycin
- Affect on eukayotes : cycloheximide & diphtheria toxin
- Affect both prokaryotes & eukaryotes : puromycin

## Inhibitors of protein synthesis

| Inhibitors       | Mechanism of action                                                             |
|------------------|---------------------------------------------------------------------------------|
| streptomycin     | binds to 30 s ribosomal subunit, preventing formation of the initiation complex |
| tetracycline     | binds to 30 s ribosomal subunit, inhibits binding of aa-t RNA to A site         |
| chloramphenicol  | inhibits peptidyl transferase activity of 50s ribosomal subunit                 |
| erythromycin     | binds to 50 s ribosomal subunit, prevents translocation                         |
| cycloheximide    | inhibits peptidyl transferase in eukaryotes                                     |
| diphtheria toxin | inhibit translocation of peptidyl-tRNA from A to P site                         |
| puromycin        | prematurely terminates synthesis                                                |

## Protein degradation

- Protein has half-life, exp. N-Met 20 min, N-Pro 3 min degraded after synthesize.
- Protein containing more PEST sequence (proline-glutamateserine-threonine) → shorter half-life
- Protein is degraded with several purpose
  - Food, pathogen that engulf into the cell is degraded to get energy or prevent cell from destruction by pathogen
  - Get rid of unwanted or folding defect proteins
  - To slow/stop biochemical reaction
  - Control metabolism exp. Autophagy (stress, starvation) destroy its own organelle

## Protein degradation

#### Two ways:

Lysosomal proteolysis: Engulf pathogen, Food fused with Lysosome and destroyed by Enzymes (endocytosis, autophagy)





Miss-folding of protein is Destroyed in cytosolic by proteasome pathway/Ubiquitin-ATP dependent pathway

## Summary

- Proteins are complex: variety, various in their amount
- Has many functions in our body
- Post-translational modification, alternative splicing occurred in eukaryote: makes them function properly
- Protein targeting bring proteins to their work place

## Suggested reading







