Energy Metabolism & Control

Chaisiri Wongkham

Biochemistry, Medicine, Khon Kaen University

363 219 Biochemistry for Physical Therapist Student, Jan 2020

To maintain living status, living system (cells / organisms) require...

- Molecular building blocks
- Biochemical catalyst
- Genetic information
- Energy

1

Energy conversion in biosphere

From environment into living systems:

Electromagnetic (solar) energy

 Chemical energy which exist in the bonds of biological (organic) molecules

Photosynthetic

autotrophs

Heterotrophs

 CO_2

3

ATP is the universal currency in

biological system

 Hydrolysis of each phosphoanhydride bond generate -30.5 kJ/mol(-7.3 kcal/mol)

Biological energy transformations obey the laws of thermodynamics

- The First Law of Thermodynamics; energy cannot be created or destroyed, it can only be transformed from one system to another...
- The Second Law of Thermodynamics; the disorder or randomness (entropy, S) of the universe increases during all chemical and physical processes...
- **Gibbs free energy**, **G**, expresses the amount of energy capable of doing work during a reaction at constant temperature and pressure. **Enthalpy**, **H**, is the heat content of the reacting system. It reflects the number and kinds of chemical bonds in the reactants and products. **Entropy**, **S**, is a quantitative expression for the randomness or disorder in a system.
- under conditions existing in biological systems, changes in free energy, enthalpy, and entropy are related to each other quantitatively by the equation,

$$\Delta G = \Delta H - T \Delta S$$

Amino acids \rightarrow protein ΔG_1 is positive (endergonic) ATP \rightarrow AMP + \bigcirc P \bigcirc ΔG_2 is negative (exergonic) [or ATP \rightarrow ADP + \bigcirc P] Coupling reactions

Energy transformation in the living systems

- Biosynthetic work, formation of new bonds and generation of new biomolecules
- Mechanical work, movement of cells and muscular contraction
- Concentration work, transportation of molecules across plasma membrane
- Electrical work, transportation of proton across plasma membrane
- Thermal regulation, 2/3 of metabolic energy in warmed- blood animal is heat to maintain body temperature
- Bioluminescence, firefly use energy from ATP hydrolysis to generate photon

Metabolism is a highly coordinated cellular activity in which many multienzyme systems (metabolic pathways) cooperate to

- obtain chemical energy by capturing solar energy or degrading energy-rich nutrients from the environment
- convert nutrient molecules into the cell's own characteristic molecules, including precursors of macromolecules
- polymerize monomeric precursors into macromolecules: proteins, nucleic acids, and polysaccharides
- synthesize and degrade biomolecules required for specialized cellular functions, such as membrane lipids, intracellular messengers, and pigments.

From; Lehninger Principles of Biochemistry (7th, Nelson & Cox 2017, Part II)

Types of Metabolism

Catabolism

Biochemical processes by which nutrients and cellular components are broken down to generate energy and small biomolecules

Anabolism

Biochemical processes to synthesize new biomolecules from precursors, building blocks & energy from catabolic processes

Relationship between catabolic and anabolic pathways

Metabolism is highly integrated network of biochemical pathways.

Metabolism of Complex Carbohydrates

Metabolism of Confactors and Vitan

 Enzymes catalyse all the biochemical reactions

 Most enzymes are proteins, a few are RNAs (ribozyme)

 Enzyme functions alone or requires 'cofactor' / 'coenzyme'

Three types of nonlinear metabolic pathways

Precursor(s) >>>> Intermediate Metabolites >>>>> Product(s)

How metabolisms are regulated?

Compartmentalization of metabolism

Regulation of key enzymes

Biosynthesis & degradation of key enzymes

Allosteric regulation of phosphofructokinase by ATP & AMP

Covalent modification (phosphorylation) and allosteric regulation (ATP & alanine) of pyruvate kinase

Energy sources for muscular contraction

What you have learn from this 2 hours?

- How energy is transduced from environment into living system?
- ATP is an important metabolic fuel for biochemical reactions and cell functions
- Definition and types of metabolism
- Enzymes, metabolic catalysts and ways to regulate their function

